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Abstract: 
Prediction of peptides binding to HLA (human leukocyte antigen) finds application in peptide vaccine design. A number of 
statistical and structural models have been developed in recent years for HLA binding peptide prediction. However, a Bayesian 
Network (BNT) model is not available. In this study we describe a BNT model for HLA-A2 binding peptide prediction. It has 
been demonstrated that the BNT model allows up to 99% accurate identification of the HLA-A2 binding peptides and provides 
similar prediction accuracy compared to HMM (Hidden Markov Model) and ANN  (Artificial Neural Network). At the same 
time, it has been shown that the BNT has that advantage that it allows more accurate performance for smaller sets of empirical 
data compared to the HMM and the ANN methods. When the size of the training set has been reduced to 40% from the original 
data, the identification of the HLA-A2 binding peptides by the BNT, ANN and HMM methods produced ARoc (area under 
receiver operating characteristic) values 0.88, 0.85, 0.85 respectively. The results of the work demonstrate certain advantages of 
using the Bayesian Networks in predicting the HLA binding peptides using smaller datasets.  
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Background: 
The recognition of foreign antigen peptides by the host HLA 
(human leukocyte antigen) molecules is critical for T 
mediated immune response. [1,2] There are two major classes 
of the HLA: class I molecules bind peptides originating from 
endogenous pathogenic proteins while the class II bind 
peptides derived from exogenous antigens. [1,2,3] The HLA 
class I and class II usually bind antigenic peptides consisting 
of 8-11 and 13-23 residues, respectively (some class II HLA 
bind > 40 residues long peptides). The binding is usually 
characterized by very high selectivity achieved through the 
interaction of the HLA with several critical (anchoring) 
residues of a peptide. Thus, despite the fact that 
biodegradation of antigenic proteins can theoretically produce 
a very large diversity of peptides, the actual number of them 
selectively bound to a specific HLA allele is limited. [4,5] 
This makes it not trivial and a very important goal to 
theoretically identify those specific fragments of protein 
sequences that are capable of selective interaction with 
specific HLA allele. It is believed that the ability of predicting 
HLA binding can not only provide a valuable insight into 
adaptive immunity but is also an essential step of ‘in silico’ 
vaccine development. [3] In recent years, a number of 
theoretical methods for predicting HLA binding have been 
reported. [1-4] Conventionally, these tools could be divided 
into three major groups: profile- and matrix-based approaches 
[6], methods utilizing the Artificial Neural Networks (ANN) 
[6,7] and those using the Hidden Markov Model (HMM). [8]  
 
The profile- and matrix-operating models are based on the 
notion (derived by the analysis of crystal structures of 
peptide-HLA complexes) that the binding energy for 
individual residue within a peptide does not depend on the 

effects of the neighbouring amino acids. [6, 9] Thus, the 
corresponding methods operate by various additive scoring 
schemes to evaluate the likelihood of a given peptide to bind 
to a particular HLA allele. Such simplification allows fast 
processing of large amounts of data but sometimes accounts 
for the low accuracy compared to non-linear approximations 
such as Artificial Neutral Networks (ANN) or the Hidden 
Markov Model (HMM). [6, 8]  
 
In the current study, we evaluate the previously unreported 
Bayesian Network (BNT) approach as another suitable 
method for modeling the HLA binding and compare the 
performance of the BNT with the results from the ANN and 
HMM solutions. The successful applications of the ANNs for 
prediction of the HLA peptides have been demonstrated in 
numerous studies. [6-8] Usually, the ANN based methods 
produces up to 80% accuracy in distinguishing the HLA 
binders from non-binders. At the same time, the ANN 
approximation is not suitable for processing peptides of 
varying length.  
 
On another hand, this problem can be resolved by utilizing the 
Hidden Markov Model which allow up to 85% accuracy in 
discriminating the HLA binding peptides. [8] Being 
somewhat more accurate than the ANN-based methods, the 
HMM has the disadvantage of being more computationally 
demanding. Moreover, the Hidden Markov Model can only 
consider the mutual influence of adjacent residues but cannot 
account for possible distant interaction between non-
neighbouring residues in a peptide. Therefore, the existing 
computational tools allow rather accurate theoretical 
prediction of the HLA binding peptides (for certain HLA 



Bioinformation by Biomedical Informatics Publishing Group open access 
www.bioinformation.net   Prediction Model 
____________________________________________________________________________________________________ 

ISSN 0973-2063 
Bioinformation 1(2): 58-63 (2005)  

Bioinformation, an open access forum 
© 2005 Biomedical Informatics Publishing Group 

 
 

59

alleles) given that there is enough experimental data available 
to train the corresponding machine learning models. Here, we 
describe a BNT model using smaller empirical datasets 
compared to training requirements for ANN and HMM. 
 
Methodology: 
Dataset: 
Binders: We derived a set of 244 HLA-A2 binding peptides 
from MHCPEP and SYFPEITHI databases. [6, 8, 10] Non-
binders: A set of 464 non-binding peptides required for 
adequate model training have been randomly generated from 
a human albumin sequence. The size of the non-binders was 
chosen so as to keep the binder – non-binder ratio to 1:2. Over 
training: Peptides used for training were carefully curated to 
avoid over training by eliminating redundant peptides such 
that no two peptides shared more than 4 residues. 

 
Software used in the analysis: 
Several open source and commercial software products have 
been used in this study. The ANN (a fully connected 3-layer 
back-propagation configuration trained on the generalized 
delta rule) has been built and manipulated within the Stuttgart 
Neural Network Simulator (SNNS) package. The input and 
output layers consisted of 180 nodes and 1 node, respectively. 
The number of the hidden layer nodes has been tested in the 
range of 2 to 50. The Bayesian Network has been built with 
the WEKA machine-learning software and the Hidden 
Markov Model was created with the MATLAB (simulation 
and modelling software) HMM toolkit. 
 
ANN (Artificial Neural Networks): 
An application of ANN for prediction of class I HLA binding 
has been described by Brusic and co-authors. [6] The 
developed ANN-based method uses the machine learning 
algorithm to train the HLA binding patterns in peptide 
residues. The typical configuration of the ANN adopted for 
the HLA binding prediction represents a three layer Neural 
Network operating on the binary input. Within this 
approximation, each HLA binding peptide consisting of nine 
residues (typical for class I HLA) is represented as a string of 
180 binary numbers (zeros and ones) serving as the input of 
the ANN. This corresponding 180-elements vector is formed 
by 9 blocks of 20 numbers where each block represents a 
consequent position on a peptide and every number in the 
block of 20 designates the presence or absence of specific the 
amino acid residue. The hidden nodes of the ANN play the 
role of free optimisation storing the inferred patterns 
emerging from the input data. Number of hidden nodes can 
usually be optimised during the ANN training and the output 
of the three layers ANN is constituent of a single node 
providing the binder/non-binder discrimination information. 
 
HMM (Hidden Markov Model): 
The HMM approach describes an abstract statistical system as 
a number of hypothetical states connected by the transition 
probabilities. Thus, the problem of formalization of the HLA 
binding is a ‘natural’ task for the HMM which treats a string 

of residues in a peptide as a Markov Chain terminated by its 
START and END Markov states. A peptide represented in 
HMM includes 20 Matching states (reflecting possible 
variations of amino acids) as well as 20 Deletion and 20 
Insertion states altogether instructing the HMM algorithm to 
extract the binding patterns from the empirical HLA binding 
data. The HMM defines the probabilities included into the 
matching states on the basis of the experimental frequencies 
of particular residue in a given peptide position during 
training of empirical inputs (sets of peptides with 
experimentally pre-determined binding or non-binding 
character). The Insertion state of the Markov Chain represents 
a logical operation for introducing an additional residue into 
the construction of a pattern with uniform probabilities and 
the Deletion states are defined within the HMM without 
assigning any probabilistic properties. HMM utilizes the 
Baum-Welch [8] algorithm optimizing the transition 
probabilities from one state to another beginning from the 
Start state of the Markov Chain and then chooses the next 
state of the system depending on the transition probabilities of 
the consequent chain edges. This process repeats until the 
transition reaches the End state which leads to the generation 
of multiple patterns (sequences of states) each reflecting the 
probability of the studied peptide to be a HLA binder. More 
detailed description of the HMM method for predicting HLA 
binding peptides is described elsewhere. [8] 
 
BNT (Bayesian Network):  
The Bayesian Network method processes experimental 
information differently compared to conventional statistical 
approaches. Instead of using pre-defined analytical functions 
the BNT attempts to establish an optimal statistical model to 
fit experimental data. The Bayesian approach has found a 
broad application in those areas of data analysis where there is 
a need for extracting complex patterns from sizable amounts 
of information with significant levels of noise. The Bayesian 
method has been successfully employed for the SAGE data 
analysis, for modeling genetic regulatory interactions [11], for 
solving some protein folding problems [12] and for text 
processing and diagnostics. [13] One of the basic Bayesian 
definitions is prior information P(H) where H is a 
model/hypothesis and P(H) is probability of a model to be 
true. In the context of predicting the HLA binding, as a prior 
information P(H) we can consider the assumption that any 
peptide can theoretically be a HLA binder. In other words, the 
initial probability P(H) for an arbitrary peptide to bind to a 
particular HLA allele is 50% (a chance probability which will 
change in a recurrent manner during the Bayesian 
optimisation). Another definition of the Bayesian analysis is a 
likelihood function P(D|H) reflecting the probability of 
obtaining the observed experimental data (D). This function is 
not pre-set prior the analysis but is estimated during the BNT 
optimisation. The third Bayesian category is the degree of 
plausibility P(H|D) (sometimes called posterior probability of 
initial hypothesis) which can be calculated using the Bayesian 
Theorem stated as follows in equation 1. Equation 1 is p(H|D 
) = p( D|H) p(H)/p(D), where p(D) is the normalization factor. 
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The Bayesian Network represents an application of the 
Bayesian theory which formalizes the joint distribution over a 
set of random variables X = {X1,..., Xn} as a product of 
conditional probabilities. An abstract Bayesian network can 
be defined by a graphical structure M combining a family F of 
conditional probability distributions F= {P (Xi | q)}, in turn 
depending on the vector of parameters q = {pa[Xi ]}. The 
graphical structure M can be illustrated as set of nodes V and 
directed edges E which can connect any pair of nodes where 
the nodes V correspond to random variables and the edges 
indicate conditional dependence relations among them (Figure 
1A). Here, we describe the use of Bayesian Network for the 
prediction of HLA binding peptides. Peptides consisting of 
nine residues can be described by 180 variables each 
reflecting a probability to have a defined residue type at a 
defined position of a HLA binding peptide. The relationships 
between these 180 variables can be optimized within the BNT 
methodology for peptides in the training set to yield the 
posterior probabilities p(H|D) according to equation 1. Figure 
1A illustrates that the BNT can capture mutual influences 
among amino acids in a HLA binding peptide by representing 
it as a directed graph consisting of edges Xi. The BNT can 
operate on such graph on the basis of the observed 
frequencies of certain amino acids at defined positions of the 
peptides capable of binding to the HLA molecule. 
Accordingly, the joint probability for a given peptide to be a 
binder can be estimated by the BNT as given in equation 2. 
Equation 2 is P(X1, X2, . . . ,Xn) = P(X1  | pa[X1 ]) *P(X2  | 
pa[X2 ]) *......*P(Xn  | pa[Xn]) where, where P(Xi |pa[Xi ]) = 
K1* P(Xi | pa 1 [Xi ])  +  K2* P(Xi | pa 2 [Xi ])  + K3* P(Xi | 
pa 3 [Xi ])+… represents a sum of conditional probabilities 
and Kj is a weight coefficient. The entity P(Xi|pa[Xi]) in 
equation 2 corresponds to the conditional probability which 
represents the influence of variable Xi on a peptide binding 
ability.  It should be noted that the vector pa[Xi]={pa1[Xi], 
pa2[Xi], ..} is represented in Figure 1A by the graph edges. 
 
 
 

Results and Discussion: 
Performance of BNT, ANN and HMM in original set: 
A total of 708 peptides are separated into training and 
testing groups (in the proportion of 9:1) each containing 
both binding and non-binding peptides (the corresponding 
sets are given in Appendix 1). The very same training and 
testing sets are used to train and evaluate the ANN, HMM 
and BNT models for distinguishing the HLA-A2 
interacting peptides. A constant cutoff values 1 and 0 to the 
HLA-A2 binding and non-binding peptides in the training 
set was assigned. It has been observed that both ANN and 
the HMM required less than 200 training cycles to achieve 
maximal predictive accuracy. It has also been established 
that by gradually changing the number of ANN hidden 
nodes from 2 to 50, the predictive ability of the network 
(the ANN learning rate was kept 0.2 with the 0.02 shift) is 
not significantly influenced. The processing of the data by 
BNT for each peptide in the training set yielded the 
resulting probability value P(X1, X2, . . . , Xn). The 
corresponding parameters estimated by equation 2 can be 
found in Table 1 (see Additional file 1). Corresponding 
outputs from ANN and HMM are also given. Each peptide 
in Table 1 has been classified as the HLA-A2 binder if the 
corresponding BNT joint probability P(X1, X2,  . . . , Xn) 
exceeded 50%. The outputs from HMM and ANN have 
also been characterized by applying 50% cut-off. The 
predictive power of all three methods has been assessed by 
processing the testing set (67 peptides) through the pre-
trained models. Subsequently, FP (false positives), FN 
(false negatives), TP (true positives) and TN (true 
negatives) were estimated. Then, sensitivity, specificity, 
percentage of correct predictions and Matthews Correlation 
Coefficients ((Mc) = {TP*TN-
FP*FN}/{(TN+FN)(TN+FP)(TP+FN)(TP+FP)}1/2 ) were 
also calculated (Table 1). Results show that ANN, HMM 
and BNT produced prediction accuracy for testing and 
training sets. However, BNT outperformed ANN by 8% for 
HLA-A2 peptide binding prediction. Results of the ARoc 
analysis for the three models are also presented in Table 1. 
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Set 1 (73 peptides) Set 2 (635 peptides) Prediction parameter 
ANN HMM BNT ANN HMM BNT 

True Positives 17 21 24 191 193 194 
True Negatives 42 44 45 386 390 392 
False Positives 6 4 3 30 26 24 
False Negatives 8 4 1 28 26 25 
Matthew Coefficient  0.73 0.85 0.86 0.78 0.86 0.89 
Specificity 0.91 0.92 0.94 0.93 0.94 0.94 
Sensitivity 0.68 0.84 0.96 0.87 0.88 0.89 
Correct predictions 0.89 0.93 0.95 0.91 0.93 0.95 

ARoc performance 
Training/Testing set  
separation ANN HMM BNT 

0.4 / 0.6 0.856 0.860 0.880 
0.5 / 0.5 0.873 0.880 0.901 
0.6 / 0.4 0.932 0.920 0.940 
0.7/ 0.3 0.962 0.950 0.960 
0.8 / 0.2 0.985 0.992 0.980 
0.9 / 0.1 0.992 0.998 0.990 

Table 1: Performance of different models in varying datasets is given 
 
Performance of BNT, ANN and HMM in reduced set 
The ARoc performances of the three models for varying 
proportions of training and testing set are also presented in 
Table 1 and Figure 1B. The ARoc for all the three models are 
very high for large proportions of training sets (80% and 
90%). However, the ARoc for BNT is higher than ANN and 
HMM for low proportions of training sets (40%-60%). This 
suggests that BNT out performs ANN and HMM when lower 
proportions of training set are used and is therefore suitable 
for modeling when dataset size is limited (as low as 40%). 
The corresponding dependence between prediction accuracies 
and proportions of training to testing datasets is given in 
Figure 1C. Figure 1C suggests that the performance of all the 
methods is comparable when the size of the training sets is 
sufficiently large. However, when the training set is reduced 

the BNT provide more accurate predictions. It should be 
noted however, that the BNT is computationally intensive and 
may be less applicable for processing very large amounts of 
data. 
 
Conclusion: 
HLA binding peptide prediction finds application in vaccine 
design. However, the prediction of HLA binding peptides is 
not trivial. Here, we discussed the performance of ANN, 
HMM, BNT models for HLA-A2 binding peptide prediction. 
The prediction accuracy of ANN, HMM, BNT are similar 
when large training sets are used. Nonetheless, the BNT 
model performed better than ANN and HMM even when the 
training set is reduced to 40% of the original size. 
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Figure 1: (A) Representation of a nine residue long peptide by the Bayesian Network. (B) Dependence between the estimated 
ARoc parameter by ANN, HMM and BNT with training and testing set. (C) Dependence between the prediction accuracy 
estimated by ANN, HMM and BNT with training set size. 
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