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Abstract: 
One of the major contributors to protein structures is the formation of disulphide bonds between selected pairs of cysteines 
at oxidized state. Prediction of such disulphide bridges from sequence is challenging given that the possible combination of 
cysteine pairs as the number of cysteines increases in a protein. Here, we describe a SVM (support vector machine) model 
for the prediction of cystine connectivity in a protein sequence with and without a priori knowledge on their bonding state. 
We make use of a new encoding scheme based on physico-chemical properties and statistical features (probability of 
occurrence of each amino acid residue in different secondary structure states along with PSI-blast profiles). We evaluate our 
method in SPX (an extended dataset of SP39 (swiss-prot 39) and SP41 (swiss-prot 41) with known disulphide information 
from PDB) dataset and compare our results with the recursive neural network model described for the same dataset.  
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Background: 
The completion of the human genome project shows a 
significant gap between the protein sequence and known 
structure space. Determination of protein structures using 
conventional X-ray crystallography and NMR (nuclear 
magnetic resonance) techniques is not adequate to cover the 
sequence space in the context of drug discovery. Hence, 
protein structure prediction using computational methods is 
becoming critical. However, prediction of protein tertiary 
structure from sequence is non-trivial and is generally 
achieved by dividing the problem into finite levels of 
secondary structures and super secondary structures. 
 
The native protein fold is dependent on the physical-
chemical properties of the amino acid residues in the 
sequence. Disulphide bonds between cysteines are 
important features in the formation of several protein folds. 
It is shown that cysteines are highly conserved in a protein 
family and they exit in either oxidized or reduced states. [1-
3] The cystines in oxidized state form covalent bond 
between each other and are referred as disulphide bridges. 
A schematic representation of conotoxin (PDB (protein 
databank) ID 1AS5) showing disulphide bonds is given in 
Figure 1. Information about the location of disulphide 
bridges find application in the understanding of protein 
folding [1] and have a role in thermodynamic stability of 
proteins. [2] Hence, studies on disulphide bridges have 
become very important.  
 
Fariselli et al., [2] proposed a disulphide prediction model 
combining a neural network based predictor and 
evolutionary data with an accuracy of 81%. In 2000, Fiser 
and Simon [3] proposed a method based on multiple 

sequence alignment and reported an accuracy of 82% using 
Jack Knife test on a larger dataset of 81 proteins. Martelli et 
al., [4] proposed a Hidden Neural Network method (a 
combination of Hidden Markov Model and Neural 
Network) with an accuracy of 84% for a larger data set of 
969 non-homologous proteins.  
 
Vullo and Frasconi [5] used recursive neural networks and 
evolutionary data to predict bonding patterns using known 
information on cystine bonding states. The method was 
tested using a small dataset derived from Swiss-Prot release 
39 (SP39) and an accuracy of 48% was reported. Prior to 
this, Fariselli and Casadio [6] linked connectivity 
prediction to graph matching. They also showed better 
connectivity prediction by combining with neural network 
models. 
 
Recently, Ferre and Clote [7] emphasized the importance of 
secondary structure and solvent accessibility information in 
the development of a di-residue neural network model for 
predicting disulphide bridges. Cheng and colleagues 
discussed ways to find and count (using recursive neural 
network) disulphide bridges in a given sequence and tested 
the model performance in SPX (an extended dataset of 
SP39 and SP41 with known disulphide information from 
PDB). [8] Here, we describe a SVM (support vector 
machine) model for predicting cysteine bonding state as an 
extension of the work by Cheng and colleagues. [8] In this 
method, we predict disulphide bond connectivity given two 
cysteines with and without a priori knowledge on their 
bonding state using the SPX dataset.  
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Figure 1: A schematic representation of CONOTOXIN (PDB (protein databank) ID 1AS5) showing disulphide bonds. 
 
Methodology:  
Support Vector Machines:  
SVM (Support Vector Machine) is a class of tool used in 
classification and regression as described elsewhere by 
Vapnik. [9] When used as a binary classifier, an SVM will 
construct a hyperplane which acts as the decision surface 
between the two classes. This is achieved by maximizing 
the margin of separation between the hyperplane and those 
points nearest to it. The idea is further extended for data 
that is not linearly separable by first mapping it to a 
possibly higher dimension feature space. The SVM 
formulation is desirable due to its mathematical tractability 
and good generalization properties.  
 
The data to be classified is formally written as  
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The nonlinear feature map ( ) : m dx xφ ⊂ℜ →ℜ  

( dm << ) is never explicitly used in the calculation. 
Vapnik [9] suggests the form of the hyperplane 

( )f x F∈  to be chosen from a family of functions with 

sufficient capacity. In particular, F  contains functions for 
the linearly and non-linearly separable hyperplane having 
the following forms:  
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Now for separation in feature space, we would like to 
obtain the hyperplane with the following properties:  
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The conditions in equation Equation 4 can be described by 
a strict linear discriminant function, so that for each 
element pair in Θ  we require:  
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The distance from the hyper-plane to points lying closest to 

it is given geometrically as
1
w

. The soft-margin 

minimization problem relaxes the strict discriminant in 
equation 5 by introducing slack variables, iξ  and is 
formulated as: 
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 (Equation 6) 

 
The constant C is selected so as to compromise between the 
minimization of training error and prevention of over-
fitting. Applying Lagrangian Theory, the following dual 
problem in terms of Lagrange multipliers iα  is usually 
solved  
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The explicit use of the nonlinear function (.)φ , has been 
circumvented by the use of a kernel function, defined 
formally as the dot products of the nonlinear functions 
  

( ) ( ) ( ), = ,i j i jK x x x xφ φ  (Equation 8) 

 
Kernels can be chosen according to Mercer's theorem. In 
all our experiments we use polynomial kernel with degree d 

= 2 given by  
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This was chosen based on preliminary experiments 
involving fewer protein chains. The SVM classifier is given 
by:  
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Disulphide bonding patterns in proteins: 
The human alkaline phosphatase (PDB ID: 1EW2) have 5 
cysteines with 2 disulphide bonds formed between 2nd - 3rd 
and 4th -5th cysteines in the order of the sequence. It should 
be noted that the 1st cysteine is not involved in any 
disulphide bond formation. This describes the nature and 
selectivity of disulphide bond formation in human alkaline 
phosphatase and gives information on the bonding states of 
the cysteines in the sequence. However, disulphide bonds 
are formed in various combinations in different proteins. 
Therefore, it is of potential interest to predict the nature of 
disulphide bonds from sequence for which structure is 
unknown. Nonetheless, this task is non-trivial and 
predictions of disulphide bonds are generally preformed 
with and without prior knowledge on cysteine bonding 
states in a sequence of interest. If we have to predict the 
disulphide bonding patterns in human alkaline phosphatase 
assuming the structure is un known, then it can performed 
either with or without a prior knowledge on the bonding 
state of cysteines. Prediction of disulphide bonding patterns 
with prior knowledge on the bonding state (6 different 
possible combinations) is relatively simpler to that without 
any prior knowledge on the bonding state of the cysteines 
(10 different possible combinations) in human alkaline 
phosphatase.  
 
Dataset:  
The SPX dataset was created by Cheng et al., [8] was used 
in this study. The dataset contains non-homologous (at a 
sequence similarity cut-off of < 25%) sequences 
(containing information on intra-chain disulphide bonds) 
from PDB. 
 
Feature parameters:  
We used five parameters for each cysteine based on 
physico-chemical properties and probability of occurrence 
in secondary structures (alpha helix, beta strand, coil), 
Chou-Fasman conformational parameters [10] (3 in 
number), Kyte-Dolittle hydrophobicity scale [11] and 
Grantham polarity [12] (1 in number each) were chosen as 
features. The Chou-Fasman parameter for helix (α ) is 

given by = /i iP f fα α α〈 〉 , where, fα〈 〉 = (number of 

residues in helix / total number of residues) and i  is the set 
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of amino acids residues. Similar conformational parameters 
for strand iPβ  and coil iPγ  were calculated. Kyte-Dolittle 

hydrophobicity values and Grantham Polarity values were 
taken from the Protscale website. [17] We chose the above 
parameters after preliminary experimentation with a small 
dataset (30 protein chains) at different hydrophobic and 
polarity scales.  
 
Use of homologous sequence information: 
Recent CAFASP and CASP results showed that the use of 
homologous sequences can improve secondary structure 
prediction, solvent accessibility calculations and cystine 
connectivity identification. This attempts to capture the 
evolutionary information for sequences and is generated by 
developing matrices from sequence profiling. The PSSM 
(position specific scoring matrix) is generated by 
calculating position-specific scores for each position from 
sequence profiles and the scores are a measure of residue 
variability or similarity in the profile. [13] The PSSM 
generated by PSI-BLAST (http://www.ncbi.nlm.nih.gov/) 
from a non-redundant (NR) dataset of protein sequences 
was used in this analysis with an E-value (expect value) of 
0.001 at 3 iterations. A window of length w  was 
considered for every cysteine under consideration at the 
center of the window and this is used as a feature for the 
classifier. In PSSMs, there are *w L  elements and L is 
the protein length. In this study, we used L = 5 after several 
trails. The PSSM values vary approximately between -10 
and +10. However, SVM require values between 0 and +1. 
Therefore, we normalized the PSSM values using the 
following function as described elsewhere. [14] 
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In this formulation x  is the value in the PSSM matrix. 
Instead of taking just 20 values per residue as a feature 
vector, we considered a window of length w  and all the 
values within the window were considered in feature 
definition. [13] We were able to incorporate the gradual 
variation required for the classifier to make a better 
decision by selecting a window w  = 5 for PSSM values. 
We included 5 X 20 PSSM values in addition to five 
physical-chemical features for every cysteine under 
consideration and the total feature length for every cysteine 
was 105. Hence, the final feature length for each cysteine 
pair is (( *20) 5)*2w + .  
 
SVM parameters and performance measures: 
We use SVM with = 10C  and a polynomial kernel 
with = 2D  in this analysis. We used the SVM 
implementation SVMHeavy developed based on 
incremental training of support vector machines as 
described elsewhere. [14,16] A five fold cross validation 
was performed for each experiment reported in the study. 
We compared the performance of the model with the 
results of Cheng and colleagues using specificity, 
sensitivity and accuracies cQ and pQ . Specificity is the 

ability to reject false positive matches given 
by /( )TN FP TN+  and sensitivity is the ability to detect 

true positive matches given by /( )TP TP FP+  (TP = 
True Positive; FP = False Positive; TN = True Negative). 

cQ defined per disulphide bond is given by (TP + 

TN)/(TP+TN+FP+FN) and pQ  is the accuracy defined per 

protein sequence. 

________________________________________________________________________________________________ 
Table 1A: Disulphide Bridge Prediction with a priori knowledge about bonding state 

Number of 
Bridges 

Specificity ┼ Sensitivity ┼ Specificity Sensitivity 

1 0.48 0.71 0.61 0.65 
2 0.63 0.63 0.63 0.61 
3 0.67 0.62 0.66 0.60 
4 0.55 0.50 0.61 0.51 
5 0.41 0.37 0.56 0.38 
6 0.33 0.29 0.59 0.37 
7 0.36 0.31 0.47 0.36 
8 0.32 0.30 0.44 0.32 
9 0.71 0.61 0.55 0.35 
10 0.40 0.37 0.59 0.45 
12 0.55 0.50 0.60 0.50 
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14 0.62 0.57 0.65 0.58 
16 0.23 0.22 0.43 0.25 
17 0.40 0.35 0.51 0.31 
25 0.40 0.24 0.63 0.30 
26 0.73 0.42 0.69 0.30 

Overall 0.54 0.55 0.62 0.59 
Table 1B: Disulphide Bridge Prediction without a priori knowledge about Bonding State 

Number of Bridges Accuracy at 
Bridge level ┼ 

Accuracy at Protein 
Level ┼ 

Accuracy at Bridge 
level 

Accuracy at 
Protein Level 

1 - 0.59 0.65 0.53 
2 - 0.59 0.59 0.50 
3 - 0.54 0.61 0.56 
4 - 0.34 0.63 0.46 

Overall - 0.51 0.63 0.52 

┼Chang et al., [8] 
 
Results and Discussion: 
Prediction of disulphide bonds from sequence has a critical 
role to play in protein fold identification and folding 
simulation. A number of statistical models have been 
described using ANN (artificial neural network), HMM 
(hidden Markov model) and evolutionary algorithm for the 
prediction of disulphide bonding patterns in protein 
sequence. [2-8] However, a SVM model was not available 
for disulphide boding pattern prediction in protein 
sequences. Table 1A shows the performance of the 
described SVM model (with prior knowledge on disulphide 
bonding states). The results were compared with the 
recursive neural network model by Cheng and colleagues 
[8] in SPX dataset. We compared with the results of Cheng 
and colleagues [8] because the dataset used in the both 
studies were identical. The comparison shows that the 
SVM method (4% higher sensitivity and 8% higher 
specificity) performs better than the recursive neural 
network model for classification with a priori knowledge. 
Although, the method performs better than the recursive 
neural network model, variations in performance are 
noticed among different prediction runs. 
 
Table 1B shows the performance of the described SVM 
model (without a priori knowledge on disulphide bonding 
states) and compares with the results of a recursive neural 
network by Cheng and colleagues [8] in SPX dataset. The 
results from SVM model were found to be similar to that of 
the recursive neural network presented by Cheng and 
colleagues. [8] We measured the performance using the 
overall accuracy for disulphide bridges and proteins. These 
results (Table 1) show the utilization of SVM models for 
the prediction of disulphide connectivity in proteins. In our 
opinion, the combination of SVM parameters and the 
encoding method chosen in model development played an 
important role in better performance even in small datasets.  
 
 

Conclusion: 
Disulphide bridge pattern identification for fold prediction 
from sequence is not trivial. In this paper, we have 
described a SVM model to predict disulphide bridges with 
and without a priori knowledge on their bonding states. 
The SVM method is found to perform better than a 
recursive neural network model described elsewhere. [8] In 
future investigation, we plan to extend our approach to 
classify sequences with and without disulphide bonds. 
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