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Abstract: 
 Decision-in decision-out fusion architecture can be used to fuse the outputs of multiple classifiers from different diagnostic 
sources. In this paper, Dempster-Shafer Theory (DST) has been used to fuse classification results of breast cancer data from two 
different sources: gene-expression patterns in peripheral blood cells and Fine-Needle Aspirate Cytology (FNAc) data. 
Classification of individual sources is done by Support Vector Machine (SVM) with linear, polynomial and Radial Base 
Function (RBF) kernels. Out put belief of classifiers of both data sources are combined to arrive at one final decision. Dynamic 
uncertainty assessment is based on class differentiation of the breast cancer. Experimental results have shown that the new 
proposed breast cancer data fusion methodology have outperformed single classification models. 
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Background:  
Medical practitioners diagnose on the basis of information 
collected from different sources, effectively fusing the 
information to reach the decision. Information fusion refers to 
the combination of data originating from multiple sources and 
improving decision tasks, such as classification, estimation and 
prediction. Ultimately it provides a better understanding of the 
phenomena under consideration. In case of breast cancer, 
number of factors such as heterogeneity in diet, age, race, 
environmental factors, geographic location, number of 
pregnancies, as well as genetic makeup determines the risk of 
malignancy. [1, 2] The degree of complexity of the disease is 
further enhanced by chromosomal rearrangements frequently 
associated with the pre-malignant disease. The cellular 
pathways that are altered by these aberrations have been 
difficult to evaluate in patients, especially during early stages 
of the disease process. [1, 2] 
 
Since there are number of factors that determined the risk of 
breast cancer, so it is not advisable to rely on just one source of 
information for diagnosis. There is a well established 
association between different symptoms of breast cancer e.g. 
germline BRCA1 or BRCA2 mutations are associated with 
increased lifetime risk of developing breast cancer [3] but not 
all mutation carriers develop breast cancer and the age of onset 
of breast cancer remains unpredictable. [4] There is a well 
established association between atypical ductal epithelium 
identified by histological biopsy, nipple aspiration (NA) or fine 
needle aspiration (FNA) and an increased risk of future breast 
cancer. [4] The relative risk of developing invasive breast 
carcinoma for women found to have atypical ductal 
hyperplasia on breast biopsy is 4.3 times that of the general 
population and, when combined with a positive family history, 
the relative risk of invasive breast cancer rises to 9.7 times that 
of the general population. [5]  
 

Association between the different symptoms are not only 
factor that contribute the idea of fusing information from 
different resources but the limitation of diagnostic methods are 
one of the major fact as well e.g. mammographic screening is 
the most reliable method but often fails to detect tumors that 
are less then 5mm in size  and also dense breast tissue are 
difficult to interpret. [6] The limitation of FNA can either be 
technical or related to the nature of the lesion itself. [6] 
 
Medical information fusion has been demonstrated by Azuaje 
et al., [9] an information fusion technique based on a 
knowledge discovery model and the case-based reasoning 
decision framework using data from heart disease risk 
estimation domain. Fusion techniques combine information at 
the retrieval-outcome level and data at the discovery-input 
level. [9] Paquerault et al., proposed a technique based on the 
fusion of one-view and two-view information to improve the 
performance of mammography mass detection of breast cancer. 
A classifier was trained to differentiate the true mass pairs 
from the false pairs. A final fusion stage combined the two-
view object pair information with the one-view object scores. 
[10] 
 
There is wide recognition of Fine Needle Aspiration (FNA) 
and microarray analysis as the principal diagnostic methods. 
[1, 18] Microarray methodology involves placing a large 
number of DNA fragments corresponding to the different 
genes to be studied on a glass slide or glass wafer. [3] 
Microarray analysis determined the level of expression in a 
tissue sample of many genes simultaneously. Microarray 
experiments generate large datasets with expression values for 
thousands of genes [4], but usually not more than a few dozens 
of array, that gives rise to the issue of the curse of dimension. 
FNA cytology is the technique that involves the insertion of a 
fine needle (between 21 and 25 gauge) into a lesion and the 
extraction of a small sample of cellular material which is 
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smeared onto glass slides. The cells are stained and examined 
morphologically by cytopathologists. [6] The features are 
computed from digitized image of a fine needle aspirate to a 
breast mass. They describe characteristics of the cell nuclei 
present in the image. [6] 
 
The aim of our work is to study and apply Dumpster Shafer 
theory of mathematical belief to fuse breast cancer data 
obtained from different diagnostic techniques in the 
management of breast disease. Input data, consisting of feature 
vectors ported into three different classifiers as input. The 
classifiers we used in this study are SVM with linear, 
Polynomial and RBF kernel. Each classifier provides beliefs of 
two classes benign and malignant. These beliefs are then 
combined to reach a final diagnosis using Dempster’s 
combination formula. The experiments are carried on two 
types of breast cancer data. One is Fine Needle Aspirates 
Cytology (FNAc) data, other is obtained from gene expression 
pattern in peripheral blood cells. FNAc breast cancer data 
collected by physician W.O. Wolberg, University of Wisconsin 
Hospitals, contained 699 samples, 458 of which were benign 
and 241 of which were malignant. [1] FNAc data set is 
publicly available on UCI machine learning repository. Gene 
expression data consist of 60 blood samples obtained from 56 
different women of which 24 were malignant and 36 were 
benign. [6] We have used leave one out cross validation. To 
implement this method, the available data was divided into k 
disjoint sets; k models were trained using different 
combination of k−1 partitions and were tested on the remaining 
partition. Cross-validation makes good use of the available 
data as each sample is used both as training and test data. 
Cross-validation is therefore especially useful where the 
amount of available data is insufficient to form the usual 
training, validation and test partitions required for split-sample 
training. [12] 
 
Methodology: 
To describe the methodology in figure 1 we start with the 
visualization of FNAc and microarray data. Each element of 
FNA cytology pattern sets consisted of 9 cytological 
characteristics. Each of 9 cytological characteristics of breast 
Fine Needle Aspirates (FNA) differs between benign and 
malignant samples.  

 

 
Figure 1: FNA-Cytology and gene-expression data fusion 
methodology using Dempster-shafer theory of evidence 
 
The nine independent parameters of FNAc data are: clump 
thickness, uniformity of cell size, uniformity of cell shape, 
marginal adhesion, single epithelial cell size, bare nuclei, bland 
chromatin, normal nucleoli, and mitoses. [18] Each of these 
characteristics is assigned a number between 1 and 10, with the 
largerest numbers generally indicating a greater likelihood of 
malignancy. However, not a single measurement by itself can 
be used to determine whether the sample is benign or 
malignant. 

 

 
Figure 2: Visualization of FNAc malignant data set 
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Figure 3: Visualization of FNAc benign data set 
 
It was noted in figure 3 that the benign samples had lower 
parameter values than the malignant samples shown in figure 
2. It was apparent that simultaneous simple frequency 
distribution histograms all nine parameters for each class, 
would graphically illustrate any differences between the two 
classifications, which is highlighted in figure 2 and 3. 
 
The second data is from Sharma et al. that consist of 
microarray gene-expression pattern of 1368 genes in peripheral 
blood cells of 24 women with malignant breast cancer and 36 
women with benign cancer. [6] Out of 1368 genes a panel of 
37 genes had been identified with distinct expression patterns 
in malignant versus benign samples. We have used data matrix 
of 60 samples and 37 genes with two classes benign and 
malignant. 

 

 
Figure 4: Visualization of microarray malignant data set 

 

 
Figure 5: Visualization of microarray benign data set 
 
The relative expressions of 11 features of selected genes are 
presented in figure 4 and 5. The expression level of cancer 
genes are shown in figure 4 with 36 samples of women with 
malignant cancer. The expression level of 11 genes with 
benign cancer of 24 samples is shown in figure 5. 
 
The classifiers provide the category of the cancer class: benign 
and malignant. Each classifier provides belief for classes. 
These beliefs are then combined using Dempster’s rule of 
combination. Dempster’s combination involves evaluation of 
beliefs and uncertainties from individual classifiers along with 
classifier decision. The SVM believe is calculated using 
decision function in equation (6). Uncertainty is calculated 
using equation (13). Dempster’s rules of combining belief and 
uncertainty are described in equation (12). Dempster’s rules of 
combination involve evaluation of beliefs and uncertainties 
from individual data source along with classifier decision. We 
perform classification on all three kernels and chose the best 
classification result out of three. We then combined the beliefs 
of SVM classifier of microarray (Smic), and SVM classifier of 
FNA (Sfna). Let’s assume that Bel_Smic(B) is the classifier 
beliefs of microarray and Bel_Sfna(B) is the beliefs of FNA of 
class benign. Uncertainties for two data sources are U_Smic and 
U_Sfna. Combined belief for benign class is as follows: 
 
Bel_comb(B)=[Bel_Smic(B)*Bel_Sfna(B)]+[U_Sfna*Bel_Sm

B)]+[Bel_Smic(B)*U_Sfna]] 
(1) 

 
The combined belief for malignant class is as follows: 
 
Bel_comb(M)=[Bel_Smic(M)*Bel_Sfna(M)]+[U_Sfna*Bel_S

c(M)]+[Bel_Smic(M)*U_Sfna]] 
(2) 

 
Support Vector Machine 
Support vector machines are systems based on regularization 
techniques which performed well in many classification 
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problems. [15] SVM converts Euclidean input vector space in 
to higher dimensional space [15] and attempts to insert a 
separating hyperplane. The data Z is transformed into higher 
dimensional space. The separating hyperplane in higher 
dimension space satisfies  

W.Zi  b 0+ =  (3)
 
maximize the margin between classes Equation (4) and 
Equation (5) are used. 

1
2

M a x
W

  
(3) 

 
Subject to the condition 

y  (W.Zi  b ) 1i + ≥  (4) 

 
In our experiments, a linear, polynomial (of degree 2 to 20) 
and RBF functions were used. The hyper plane found by an 
SVM in the feature space corresponds to a decision boundary 
in the input space. The value of the decision function can be 
used to evaluate belief masses. The SVM constructs a decision 
function that is represented in higher dimensional space by 

( ) ( , )
p

D x K x x bk k
k
α= +∑

 

 
(5) 

 
Where: D(x) is the decision function. p is the number of 
training examples in the training set. α  is a learned parameter 
associated with the kth training example. K is the kernel 
function which uses the kth training example and the current 
input x; and b is a learned bias which is the same across all 
examples. The kernel function is 

( , ) ( ) ( )K x x x xk k= Φ • Φ  (6) 

 
Dempster Shafer Theory of Evidence 
DST is a generalization of the bayesian theory of subjective 
probability. Bayesian theory requires probabilities for each 
question of interest, while belief functions allow us to base 
degrees of belief on the probabilities of related question. The 
belief and the ignorance or uncertainty concerning a question 
can be modeled independently. [19] In a Dempster-Shafer 
reasoning system, all the mutually exclusive context 
interpretations are enumerated in a "frame-of-discernment", 
denoted Θ. A mathematical function that translates degree of 
support to belief is known as a Belief Function. [19] Basic 
belief m(X), which represents the strength or belief mass of 
some evidence for event X provided by the source of 
information under consideration, has the following properties 
 

( ) 0m φ =   and  ( ) 1m X
x

=∑
⊆ Θ

 (7) 

Here φ  is empty, indicates belief of empty set is always zero 
and Θ represents the total event space. The belief function for 
an event A is given by 

( ) ( )Bel A m X= ∑  Where X A⊆  and A ⊆ Θ  (8) 

To understand how DST is related to our work, let’s consider, 
there is a cancer patient, and from the reality constraints person 
have “Malignant” or “Benign” cancer. Now our task is to 
specify the cancer as one of the four possibilities described 
as: { , ,{ , }, }M B M B φΘ =  

 
Meaning person is “Malignant”, “Benign”, “either Malignant 
or Benign” (which is actually an indication of ignorance or 
uncertainty), or φ  “neither Malignant nor Benign” (which is 
an indication of exceptional situation). With the frame of 
discernment Θ defined, each data source Di would contribute 
its outcome by assigning its beliefs over Θ. This assignment 
function is called the “probability mass function” of Di, 
denoted mi. So, according to Di’s outcome, the probability that 
“the cancer is Malignant” is indicated by a “confidence 
interval” whose lower bound is a "belief" and whose upper 
bound is an "Uncertainty". 

 
[Beliefi(M), Uncertaintyi(M)] 
Beliefi(M) is quantified by all pieces of evidence Ek that 
support proposition “Malignant” 

∑
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Uncertainty (M) is quantified by all pieces of evidence Ek that 
do not rule out proposition "Malignant": 

int ( ) 1- ( )i

k
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For each proposition in Θ, e.g., "Malignant", Dempster-Shafer 
theory gives a rule of combining data source Di’s outcome mi 
and data source Dj’s outcome mj 
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The evaluation of uncertainty 
We used Decision function in SVM to evaluate the belief 
masses ‘m(i)’. Now we evaluate the uncertainty according to 
belief masses. If the value of beliefs for K classes is close to 
each other, then the classifier is more uncertain about its 
decision. [19] This mean as the beliefs start spreading apart 
uncertainty starts decreasing. Let uncertainty be denoted as 
S(U) 

1 2( ) 1 ( ( ) )
1

k
S U m i

Ki
= − −∑

=  

 
(12) 

 
Results & Discussion: 
This section provides the results of individual classifiers as 
well as the combination of classifiers using DST for breast 
cancer data. The performance of SVM based classifiers with 
linear, polynomial and RBF kernel has been evaluated using 
sensitivity, specificity, positive predicted value (PPV), 
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negative predicted value (NPV) and accuracy. To highlight 
these parameters, let’s for some class A, the results would be 
True Positive (TP) if samples of class A are predicted as A and 
the results would be False Negative (FN) if samples of class A 
are predicted as non-A. The result would be False Positive (FP) 
if samples of non-A predicted as A, and True Negative (TN) if 
samples of non-A predicted as non-A. The following 
parameters are used to characterize performance of classifier 
and are given below 

 
Sensitivity=TP/(TP+FN) (13) 
Specificity=TN/(FP+TN) (14) 
PPV=TP/(TP+FP) (15) 
NPV=TN/(FN+TN) (16) 

 
Sensitivity is the probability for a class A sample to be 
correctly predicted as class A, Specificity is the probability for 
a non class A sample to be correctly predicted as non-A, PPV 
is the probability that a sample predicted as class A actually 
belongs to class A, NPV is the probability that a sample 
predicted as non class A actually does not belong to class A. 
For each classification method and each class, these parameters 
are listed in the tables below. Table 1 shows the results of 
SVM classifiers on FNA data. The overall accuracy is 90.25% 
with sensitivity of malignant is 91.6% and benign is 88.8%. 
Table 2 shows the performance of the microarray data the 
overall accuracy is 81.94% with sensitivity of malignant is 
80.50% and benign is 83.30%. Table 3 shows the result of 
application of DST to fuse the classifiers. The overall accuracy 
shown in Table 3 is 94.4% with sensitivity of malignant is 
97.1% and benign is 94.4%. Table 3 shows improved accuracy 
using information fusion with DST.  
 
Class Sensitivity Specificity PPV NPV 
Malignant 0.916 0.888 0.891 0.923 
Benign 0.888 0.916 0.923 0.891 
Table 1: Performance of the Support Vector Machine 
Classifier on FNA data 
 
Class Sensitivity Specificity PPV NPV 
Malignant 0.805 0.833 0.828 0.878
Benign 0.833 0.805 0.878 0.828
Table 2: Performance of the Support Vector Machine 
Classifier on gene expression data 
 
Class Sensitivity Specificity PPV NPV 
Malignant 0.971 0.944 0.921 0.972
Benign 0.944 0.971 0.972 0.921
Table 3: Performance of the combined result of fusion using 
DST  
 
SVM-Micro SVM-FNA Combined-Fusion 

(DST) 

 M B  M B  M B 
M 29 7 M 33 3 M 35 1 
B 6 30 B 4 32 B 3 33 
Table 4: Confusion matrices of individual classifiers and the 
combined result of fusion using Dempster Shafer Theory 
 
A confusion matrix in Table 4 shows the classification results 
of classes Malignant (M) and Benign (B) classes. Fusion with 
DST shows the maximum accuracy where 35 malignant classes 
were correctly identified while 1 was classified as benign. The 
use of FNA data with the SVM classifiers identified 33 benign 
classes and 3 were incorrectly classified as malignant. Table 5 
shows that when two single sources of data: gene expression 
and Cytology FNA data were fused using Dempster Shafer it 
showed higher accuracy. 
 

 
 

SVM-Micro SVM-FNA Combined 
Fusion (DST)

Overall 
Accuracy 

82.00 90.27 94.44 

Table 5: Accuracy of classifiers for test cases on malignant 
and benign 
 
Overall accuracies of individual and DST classifiers in Table 5 
show that fusion by DST has improved the breast cancer 
prediction as compared to individual classifiers. 
 
Conclusion: 
We have looked at the fusion of data from disparate sources for 
the prediction of breast cancer tumors. We have demonstrated 
our methodologies for fusing data form FNAc and microarray 
data set to achieve a batter overall prediction of breast cancer 
tumors. The paper has presented a method for fusing medical 
data using multiple classifiers where uncertainty and unequal 
costs of errors are present. The fusion framework has been 
presented for the computation of belief functions and 
uncertainty values from individual classifiers and data fusion 
through the Dempster-Shafer theory, in which class 
differentiation quality is used for the computation of 
uncertainties. The fusion approach has shown the best 
classification accuracy of breast tumor classification. The 
fusion approach remained robust in the presence of fairly 
different classifier performances. The ability to handle such 
situations robustly and the ability to classify samples in the 
presence of classifier uncertainty, makes this approach 
attractive for healthcare applications.  
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