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Abstract: 
Membrane proteins, which constitute approximately 20% of most genomes, form two main classes: alpha helical 
and beta barrel transmembrane proteins. Using methods based on Bayesian Networks, a powerful approach for 
statistical inference, we have sought to address β-barrel topology prediction. The β-barrel topology predictor 
reports individual strand accuracies of 88.6%. The method outlined here represents a potentially important advance 
in the computational determination of membrane protein topology. 
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Background: 
Accurate and reliable prediction of protein structure and 
function remains a challenge. Of particular importance is 
the prediction of membrane proteins, as, unlike soluble 
and fibrous proteins, membrane proteins remain poorly 
tractable targets for the principal experimental methods 
of structure determination: X-ray crystallography and 
multidimensional nuclear magnetic resonance (NMR) 
spectroscopy. [1] This problem is highlighted by the 
observation that 20% of most genomes encode 
membrane proteins [2], yet the number of solved 
membrane protein structures is approximately 2% of the 
RCSB Protein Data Bank (PDB). [3, 4]  
 
Membrane proteins fall into two structural classes: α-
helical and β-barrel. At present, the only known location 
for TM β-barrels is the outer membrane of Gram-
negative bacteria. [5] Although there is very strong 
evidence for their presence in mitochondrial and 
chloroplast membranes (e.g., the voltage-dependent 
anion channel (VDAC), the long-standing homologue 
candidate in the outer mitochondrial membrane). The 
SCOP database classifies TM β-barrels into 6 structural 
superfamiles: OmpA-like, OmpT-like, OmpLA, porins, 
TolC and Leukocidin (α Haemolysin) [6]. β-barrels have 
been shown to have a variety of functions, including the 
passive transport of ions and small hydrophilic 
molecules, the export of xenobiotics, import of 
siderophore-bound iron, and a role in bacterial 
pathogenicity. [7-10] Despite these widely different 
functions, these proteins show a remarkable degree of 
structural similarity, which has led Schulz to identify 8 
rules summarising β-barrel construction. [5] Of these, 
two are of particular importance when attempting to 
predict TM β-barrel topology: rule two states that both 
the N- and C-termini are at the periplasmic end of the 
barrel, restricting the strand number to even values; and 
rule 4, that external β-strand connections are long loops 
(termed L1, L2, etc.), whereas the periplasmic strand 
connections are generally short (T1, T2, etc.). 

 
Although the 8 rules defined by Schulz characterise β 
-barrel construction well, the prediction of barrel 
topology from sequence remains a difficult task owing 
to several complicating factors. First, identifying 
potential TM strands as stretches of sequence where 
residues alternate between polar and non-polar grossly 
over-simplifies the problem, as this pattern is 
frequently broken by non-polar residues on the interior 
of the barrel. Second, the average length of β-strands 
is seldom more than half a dozen residues; they are 
therefore much harder to distinguish than longer TM 
α-helices. [11] Finally, the most significant hindrance 
to β-barrel topology prediction is probably the lack of 
solved structures on which to train predictive methods. 
[12]  
 
This paper describes the construction of a predictor for 
a beta-barrel membrane protein topology, based on 
machine learning Bayesian Networks (BNs). BNs are 
considered especially suited to computational biology, 
as they provide a flexible and powerful framework for 
statistical inference, and learn model parameters from 
data. [13] 
 
Methodology: 
Data-set 
A dataset of TM proteins of experimentally verified α-
helical topology were required to train the method. 
The data-set was obtained from the TMPDB database 
(release 6.2) [12], in which topologies have been 
determined using X-ray crystallography, NMR, gene 
fusion, substituted cysteine accessibility, N-linked 
glycosylation experiment and other biochemical 
methods. Non-redundant subsets of TMPDB were 
used, and hence sequence similarity between proteins 
was less than 30%. The β-barrel data-set 
(TMPDB_β_non-redundant) consisted of 15 proteins. 
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Beta-Barrel Transmembrane Protein Topology 
Predictor 
A static full Bayesian model was used as it best fulfils 
the requirements expected of the network. The main 
advantage of such a model, compared with its naïve 
counterpart, is that the output probability is not a product 
of probabilities from each descriptor, but a model which 
associates one probability with each combination of 
descriptors. Thus, overall performance is typically better, 
but never worse, than that of the best individual 
descriptor.  
 
Descriptors of amino acid properties were used to 
characterise amino acids. Each descriptor was averaged, 
using a sliding-window, to produce a set of meta-
descriptors. Each meta-descriptor represents one node, 
the state of which influences, probabilistically, the state 
of the output node. There are two main facets to the 
descriptor-based sliding-window methodology: the use 
of appropriate descriptors that will provide inferences 
about whether a residue is TM or not; and the use of a 
sliding window as a mechanism for taking into 
consideration the surrounding environment of a residue.  
 
The descriptors used were the 434 amino acid property 
scales in the AAIndex database (release 6.0). [14] The 
scales provide a large range of amino acid properties, 
including: size, charge, hydrophobicity and more 
recondite propensities (such as membrane buried 
preference parameter). The initial step in the creation of 
the methods was the production of a temporary meta-
training-set. For every residue in the training-set, the 434 
sliding-window-averaged values (one for each scale) are 
calculated, and whether or not the residue is TM located 
is recorded. The BN is trained on this meta-data-set. The 
optimal shape of the sliding window was found to be 
trapezoid (data not shown), with 50% less weighting of 
the two residues at either end – this is because these 
residues are further from the residue being analysed, and 
hence have less influence. However, this may not 
account for possible tertiary conformations that may 
bring residues close together that are far apart in the 
sequence. For TM β-strands, a window size of 7 residues 
was used. The network was then trained on the sliding-
window values and residue location. During training, the 
network attempts to find which descriptor values best 
correlate with the residue occurring in a TM region. 
 
When presented with a test sequence, prediction initially 
follows the same process as training, with each residue 
assigned a sliding-window-averaged value for each 
descriptor. The network then moves through the 
sequence, and determines whether the values 
encountered are typical of a TM-located residue. As 
prediction is made on an individual-residue basis, there 
is a requirement for post-network processing to translate 
the prediction from single residues to TM regions. This 
is done with reference to knowledge of TM-region 
tendencies observed in solved and/or well characterised 
structures. Accordingly, post-network processing 
imposes the following rules upon possible TM regions: 
β-strands must have a minimum length of 6 and a 
maximum length of 25 residues. Short strand predictions 

are disregarded and long predictions are split at the 
central residue and the two residues either side of the 
split are designated non-transmembrane. 
 
Results and Discussion:  
A BN, predictive of β-strands in TM proteins, was 
constructed and its accuracy assessed using 15 
proteins taken from a non-redundant data-set of 
experimentally verified topology. The β-strand 
predictor initially appeared to produce disappointing 
results when considering overall protein topology 
accuracy (42.7%). When considering individual β-
strands, however, the accuracy of prediction was 
found to be 88.6%: much higher than the relatively 
low topology accuracy. This clearly shows that the 
method can accurately distinguish strands from non-
membranous regions of the protein; a task that, as 
discussed earlier, presents many challenges, owing to 
the short and variable nature of β-strands. In common 
with problems reported for other predictors [15], the 
predictions were a little shorter than the actual strand, 
the predicted length being on average 92.6% of the 
actual value.  
 
The β-strand predictor showed low overall topology 
accuracy, but high strand accuracy. The major 
observed failing of the method was to predict two 
separate strands as one combined or double strand. 
These false double strands fell below the maximum 
25-residue strand length threshold and were thus not 
split into two separate strands. The problem arises 
only between strands separated by short intra-cellular 
turns. The method assumes the short span of turn 
residues to be part of a strand, as they are surrounded 
by longer stretches of strand residues. This failing 
may, in part, be caused by the sliding-window method, 
which takes into account the surrounding environment 
and is therefore less sensitive to anomalous short 
regions. The topological consequence of such 
combined strands is barrel predictions with odd strand 
numbers. As all β-barrels have even numbers of 
strands, this error is easily spotted yet is surprisingly 
difficult to correct. Algorithms attempting to identify 
“double strands” are unable to distinguish them easily 
from long strands. This problem is exemplified by the 
Ferrichrome iron receptor (FHUA) protein from E. 
coli, which has the shortest and longest strand lengths 
in the data-set: 7 and 24 residues respectively. If we 
predict an odd strand number for this protein, we are 
required to distinguish a double strand, which may be 
as short as 17 residues, from a long strand of up to 24 
residues. This problem arises, in part, from the very 
small training-set used to train the network. Unusually 
long or unusually short strands, as compared with the 
average strand length, are relatively infrequent; thus, 
any network would have few training examples on 
which to base its predictions. Although the accuracy 
of the β-strand predictor suffers from the use of a 
small data-set, and would clearly benefit from re-
training as more structures become available, its 
overall predictive power nevertheless compares very 
favourably with methods developed using other 
artificial intelligence techniques. 
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Conclusion: 
The method described here represents an important 
advance in the computational determination of 
membrane protein structural class and topology. The 
beta-barrel TM protein topology predictor has good 
accuracy. The method described offers a useful and 
complementary tool for the analysis of membrane 
proteins for a wide range of possible applications. 
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