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Abstract: 
Peptides are of great therapeutic potential as vaccines and drugs. Knowledge of physicochemical descriptors, including the partition 
coefficient logP, is useful for the development of predictive Quantitative Structure-Activity Relationships (QSARs). We have 
investigated the accuracy of available programs for the prediction of logP values for peptides with known experimental values 
obtained from the literature. Eight prediction programs were tested, of which seven programs were fragment-based methods: XLogP, 
LogKow, PLogP, ACDLogP, AlogP, Interactive Analysis’s LogP and MlogP; and one program used a whole molecule approach: 
QikProp. The predictive accuracy of the programs was assessed using r2 values, with ALogP being the most effective (r2 = 0.822) and 
MLogP the least (r2 = 0.090). We also examined three distinct types of peptide structure: blocked, unblocked, and cyclic. For each 
study (all peptides, blocked, unblocked and cyclic peptides) the performance of programs rated from best to worse is as follows: all 
peptides – ALogP, QikProp, PLogP, XLogP, IALogP, LogKow, ACDLogP, and MlogP; blocked peptides – PLogP, XLogP, 
ACDLogP, IALogP, LogKow, QikProp, ALogP, and MLogP; unblocked peptides – QikProp, IALogP, ALogP, ACDLogP, MLogP, 
XLogP, LogKow and PLogP; cyclic peptides – LogKow, ALogP, XLogP, MLogP, QikProp, ACDLogP, IALogP. In summary, all 
programs gave better predictions for blocked peptides, while, in general, logP values for cyclic peptides were under-predicted and 
those of unblocked peptides were over-predicted.  
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Background:  
Peptides play a pre-eminent role in biological systems. 
However, as complex biological molecules, their physical 
properties have not received the attention that they deserve. In 
particular, their study by QSAR lags someway behind that of 
organic small molecules. QSAR has, traditionally, focussed on 
experimentally determined partition coefficients as a principal 
descriptor of lipophilicty or hydrophobicity. The partition 
coefficient is the ratio between the concentration of a chemical 
substance in two phases: typically one aqueous and one an 
organic solvent. Experimental measurement involves dissolving 
a compound within a biphasic system and determining its molar 
concentration in each layer:  
 
P = [drug]organic / [drug]aqueous 
 
The organic solvent used is usually 1-octanol. The partition 
coefficient can range over 12 orders of magnitude, and is usually 
quoted as a logarithm:  logP. It is generally assumed that the log 
P of the neutral species is 2-5 log units greater than that of the 
ionized form, and that this is sufficiently large that the 
partitioning of the charged molecule into the organic phase can 
be neglected.  
 
Despite problems with properly measuring logP values, they 
represent a potentially vital source of descriptors for QSAR 
studies of peptides. However, the experimental measurement of 
logP values is expensive, time consuming, and labour intensive. 
Accurate methods for the prediction of peptide logP values 

would thus be most useful. During the past three decades, many 
methods for predicting logP have been reported. At present, the 
most widely accepted method is a fragmental or additive 
approach, where a molecule is dissected into fragments 
(functional groups or atoms) and its logP value is obtained by 
summing the contributions of each fragment. ‘Correction 
factors’ are also introduced to rectify the calculated logP value 
when special substructures occur in the molecule.  
 
Fragment-based methods are the most common. In fragment-
based methods, a complex compound is divided into a series of 
small, simple fragments, such that each atom contained within 
the compound is present in one, and only one, fragment. The 
logP value for each fragment is known. Additive methods can 
also be based upon adding the logP values of each atom within 
the compound, rather than from a series of fragments. This 
alleviates the problem of missing fragments. An example of an 
atom based prediction method is XLOGP developed by Wang. 
[1, 2] Other approaches are based upon the use of topological 
indices and quantum mechanics.  
 
There have been various studies carried out on the logP 
prediction for peptides. Maybe the most convincing approach 
was undertaken by Akamatsu and co-workers [3], which 
investigate the hydrophobicity for peptides by carefully 
measuring the partition coefficients of a wide variety of 
peptides. After studying these data with linear regression 
analysis, they obtained different regression models for different 
kinds of peptides, resulting in a good correlation between 
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observed and predicted logP values. Various physicochemical 
parameters are used in their models, including structural effects, 
β-turn formation corrections, N- and C-terminal effects, etc. 
This work and subsequent work by Akamatsu’s group was 
incorporated into a logP prediction program known as PlogP. [4] 
Here, a training set included 219 blocked and unblocked 
peptides, varying between 2 and 5 amino acids in length. The 
model was further tested with 10 more peptides.  
 
Various studies have compared the performance of different 
logP prediction programs. However, no study focussing on 
peptides has been reported. In this paper we look at prediction of 
logP values for peptides. It obviously focuses on a different 
aspect of this prediction problem compared to the prediction of 
properties of small molecules, which is the more typical focus 
for workers in the field. Our main motivation is to better 
understand basic physico-chemical properties in the design of 
peptide vaccines. Here we take a data-set of experimentally-
determined peptide logPs and use this to compare eight publicly 
and commercially available programs, based on 7 fragment and 
1 whole-molecule based methods for logP prediction.  
 
Methodology: 
Data-set 
A set of peptides with known experimental logP values was 
compiled from the primary literature, through exhaustive, semi-
manual searching of a variety of different databases: PubMed 
[http://www.ncbi.nlm.nih.gov/entrez/query.fcgi], Web of 
Science [wos.mimas.ac.uk], Medline [medline.cos.com], and 

ScienceDirect (http://www.sciencedirect.com/). Both keyword 
and author searches, as well as retrospective searching, and 
citation matching of key authors, particularly those describing 
the development of an assay system, were used to identify 
papers detailing quantitative experimentally-derived values. The 
availability of measured LogP values for peptides was limited. 
The dataset consisted of 340 peptides, varying from 2 to 16 
amino acids in length, and included 141 blocked peptides, 158 
unblocked peptides, and 41 cyclic peptides. 
 
Software Analysed 
Seven fragment-based (XLogP [1, 2], LogKow 
[www.syrres.com], PLogP [4], ACDLogP [www.acdlabs.com], 
ALogP [www.vcclab.org], IALogP [www.logp.com] and 
MLogP [www.tripos.com]) and one whole molecule approaches 
(QikProp [www.schrodinger.com]) were studied in our analysis. 
These were downloaded or accessed on-line during June-August 
2003. Methods implemented pre-defined general models for 
logP calculation, a peptide specific logP model, and a type of in-
house trainable model for peptide logP prediction. We used 
software either via internet servers or as versions installed 
locally. As the input requirements of each program were 
different, various representations of the structures were created: 
amino acid sequences for use with PlogP; SMILES strings [5] 
for ALogP, LogKow and IAlogP; 2D SYBYL ‘mol2’ files for 
XLOGP [www.tripos.com]; 3D structures for QikProp and 
MlogP. 3D Structures were generated using Corina. [6]  
__________________________________________________ 
 

__________________________________________________ 
 
Results and Discussion: 
Peptides within the dataset varied widely, with large ranges of 
physical size and formal charge. There appeared to be no 
statistically significant relationship between the length of 
peptide and their respective logP values. Table 1 summarises 
results for all logP predictions. Figure 1 shows plots of 
experimental versus predicted logP. A list of the 379 peptide 
structures comprising the dataset, together with results from the 
various methods, is recorded in the online supplementary 
material (URL: 
http://www.jenner.ac.uk/Bioinformatics/peptide_structures.htm).  
Overall, it was the fragment based method ALogP that 
performed the best (r2 = 0.819). It predicted values for blocked 
peptides with very high accuracy (r2 = 0.822). The whole 
molecule method, QikProp, seems comparable to the fragment-
based methods and shows a similar overall performance to 
PLOGP, IALogP and XLogP. QikProp is a 3D structure based 
method. Between -3 and 1 log units, predicted logP is well 
correlated with experiment. For peptides with experimental 
values of greater than 4 log units, QikProp’s accuracy decreases 
and it predicts unblocked peptides poorly (r2 = 0.560). PLOGP 
is parameterised for peptides, has been trained on some of the 
dataset, and can not predict values for cyclic or chemically 
modified peptides. Thus the program was tested with only 44 
peptides (17 blocked and 27 unblocked). Statistically the results 
from both types of peptides were poorly correlated, r2 = 0.482. 

Unblocked peptides are predicted poorly (r2 = 0.009) but 
blocked peptides (r2 = 0.800) are very well predicted. PLOGP 
was trained on peptides with five or fewer amino acids, and 
predictions of shorter peptides are slightly better. For XlogP, 
results for the whole data set were poor (r2 = 0.428), while 
results for the blocked and cyclic peptides (r2 = 0.665, 0.665 
respectively) were reasonable; the unblocked peptides (r2 = 
0.158), however, showed a much weaker correlation. IALogP 
produces the worst predictions for the cyclic peptides (r2 = 
0.399). The program seems best at predicting values in the range 
-3 to 2 log units, although it over-predicted higher valued 
peptides. This group of four programs all show equal 
performance and are ranked second to ALogP, although the 
score for ALogP is somewhat better. Fragment based methods 
are, however, easier to use than QikProp, do not require training, 
and do not require any prior knowledge apart from the peptide 
structures. For LogKow, statistics for the whole dataset are poor 
(r2 = 0.277). Unblocked and blocked peptides were predicted 
unsuccessfully (r2 = 0.063 and r2 = 0.389), yet predicted cyclic 
peptide values very well (r2 = 0.970). For ACDLogP, blocked 
peptides are predicted with reasonable accuracy (r2 = 0.587) 
albeit predicting slightly higher than the experimental logP 
values. The results of the cyclic peptide (r2 = 0.462) are 
particularly interesting, showing a split into two distinct groups: 
one under-predicted, the other over-predicted. The least 
effective program in general was MLogP. The overall results 
were poor (r2 = 0.090). MLogP shows the poorest correlation for 
blocked and unblocked peptides, r2 = 0.060 and 0.170 
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respectively, although predictions are better for the cyclic 
peptides (r2 = 0.661).  
 
We have also calculated the percentage of predictions within +/-
0.5 and between +/-0.5 and 1.0 log unit respectively of the 
experimental value. See Figure 2. The best accuracy within +/-
0.5 log units is the IALogP method (47%). This is followed by 
PLogP (39%), QikProp (32%), XLogP (30%), ALogP (27%), 
LogKow (21%), MLogP (13%) and ACDLogP (8%). The best 
accuracy from between +/-0.5 and 1.0 log units is the ALogP 
method (35%). This is followed by QikProp (32%), PLogP 
(30%), ACDLogLogP (24%), IALogP (21%), MLogP (18%), 
XLogP and LogKow (both at 14%). 

 
Comparing blocked, unblocked and cyclic peptides, we see 
that blocked peptides performed well and unblocked peptides 
performed worst. Unblocked peptides will be zwitterionic. 
The difficulties with some of these prediction methods are 
due to internal constraints: peptides over a certain length or 
those with bulky termini could not be predicted with certain 
programs. Far fewer cyclic peptides were studied and were 
usually under-predicted. Certain peptides were consistent 
outliers, such as the poly-lysine peptide and peptide 352A, a 
blocked acylated dipeptide. These may result from gross 
experimental error, as accurate values were not encountered 
for any method. 

                                                                                                                                         

 Figure 1: Experimental log P data against predicted log P for blocked, unblocked and cyclic peptides 
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Total Blocked Unblocked Cyclic Program No. 
Peptides 

No. 
Blocked 
Peptides 

No. 
Unblocked 
Peptides 

No. Cyclic 
Peptides r2 RMSE r2 RMSE r2 RMSE r2 RMSE 

XLogP 335 140 157 38 0.428 2.253 0.665 1.009 0.158 3.043 0.665 1.648 
LogKow 339 141 158 40 0.277 2.315 0.389 1.709 0.063 2.781 0.970 2.141 

ACDLogP 336 140 156 40 0.232 2.663 0.587 1.278 0.166 3.443 0.462 2.734 
AlogP 335 138 157 40 0.822 1.211 0.382 0.673 0.394 0.897 0.946 0.457 

IALogP 339 141 157 41 0.422 1.772 0.497 1.209 0.409 0.869 0.399 4.272 
MLogP 338 140 158 41 0.090 2.351 0.060 1.402 0.170 2.272 0.661 4.411 
QikProp 327 134 154 39 0.502 1.665 0.384 1.285 0.560 1.081 0.535 3.643 
PLogP 44 17 27  0.482 1.267 0.800 1.040 0.009 1.391   

Table 1: Statistical Results 

 

 
Figure 2: The percentage of values predicted within +/-0.5 and between +/-0.5 and 1 log unit, respectively of the experimental 
value 
 

However, 1-octanol is, in reality, a poor choice of organic 
phase. It is “wet”, since it contains much dissolved water, and 
does not effectively separate hydrophobic from other 
interactions. Its relevance to biological systems is open to 
question, and many have suggested that measuring the 
partition into other organic phases, such as phospholipids 

bilayers or micelles, may prove a more rewarding avenue for 
seeking biologically-relevant measures of peptide 
hydrophobicity. 
 

__________________________________________________ 
Conclusion: 
Fragment-based methods are sensitive to the composition but 
not the sequence of peptides, and any future peptide-specific 
logP studies should account for this. Accuracy could be 
improved using consensus scoring where multiple predictions 
are combined, by averaging or weighting, to generate better 
estimates. However, available methods, though inadequate, 

particularly for long peptides, perform better than might be imagined 
naively: fragmental methods are sufficient. There is little, if any, need to 
develop new peptide-specific treatments of the problem, such as PlogP 
[4], merely a need to improve fragment-based techniques and validate 
their use with peptides.  
 
Our interest in this problem stems from our desire for effective 
measures of hydrophobicity for use in peptide QSAR studies. [7] There 
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is a clear paucity of quality data for partition coefficients, 
necessitating an unsatisfying study. The dearth of reported 
experimental studies prevents us from obtaining a dataset of 
sufficient size. The peptides we found are short and have 
heavily biased sequence compositions. Data are both sparse 
and tendentious in terms of length and sequence properties. 
Longer peptides are of most interest, yet they are under-
represented here. The average peptide length was three amino 
acids, as it becomes increasingly difficult to measure logP 
values experimentally as peptides grow longer. As most 
biologically-important peptides are much longer than three 
amino acids, the data set is likely to compromise successful 

QSAR analysis. Such problems would be resolved with a properly 
designed training set. Our potential ability to combine in vitro and in 
silico analysis would allow us to improve both the scope and power of 
our predictions, in a way impossible using solely literature data. 
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