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Abstract: 
Based on Bayesian Networks, methods were created that address protein sequence-based bacterial subcellular location 
prediction. Distinct predictive algorithms for the eight bacterial subcellular locations were created. Several variant methods 
were explored. These variations included differences in the number of residues considered within the query sequence - 
which ranged from the N-terminal 10 residues to the whole sequence - and residue representation - which took the form of 
amino acid composition, percentage amino acid composition, or normalised amino acid composition. The accuracies of the 
best performing networks were then compared to PSORTB. All individual location methods outperform PSORTB except for 
the Gram+ cytoplasmic protein predictor, for which accuracies were essentially equal, and for outer membrane protein 
prediction, where PSORTB outperforms the binary predictor. The method described here is an important new approach to 
method development for subcellular location prediction.  It is also a new, potentially valuable tool for candidate subunit 
vaccine selection. 
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Background: 
Only certain microbial components - those open to 
surveillance by a host immune system - are likely to be 
potential subunit vaccines. Thus, subcellular location is, for 
bacteria, a principal determinant of immunogenicity. There 
are five subcellular locations in Gram- bacteria and three 
locations in Gram+ bacteria. There have been few attempts 
to generate prediction methods for all compartments, as 
most methods predict only certain locations. There are two 
basic types of prediction method. First, the manual 
construction of rules derived from our current knowledge 
of the diverse factors determining subcellular location, and 
secondly, the application of data-driven machine learning 
methods which automatically identify factors that 
determine subcellular location from features of proteins of 
known location.   
 
The degrees of accuracy differ markedly between methods 
and compartments, reflecting either a paucity of data for a 
specific compartment or the lack of proper understanding 
of what determines protein location. Subcellular location 
prediction methods are often classified according to two 
factors: the input data required and the process of 
constructing prediction rules. Input data includes, the 
amino acid composition of the whole protein; sequence 
derived features of the protein (i.e. hydrophobic regions); 
the presence of certain motifs; and the sequence itself, 
whether whole or in part. It is common to combine several 
types of input data. Expression patterns have been used, 
together with sequence motifs, since expression levels and 
subcellular location are often correlated. Phylogenetic 

profiles can identify protein location through sequence 
similarity, based on the premise that the location of close 
homologues can be assumed to be equal. 
 
The output of prediction methods can be binary or multi-
category. A binary predictor indicates if a protein is located 
in one category or not. A multi-category predictor will 
attempt to sort the query sequence into one of several 
possible locations. Binary predictors often have a high rate 
of false positive prediction. Multi-category prediction 
methods suffer reduced accuracy for certain location due to 
a scarcity of data or the complexity of the signal for that 
compartment or both. As always, the better the data the 
more accurate and reliable the resulting method. Signal 
complexity is a more complicated issue. A very complex 
signal requires abundant data to ensure that all signals are 
recognised with a high degree of confidence. A simple 
signal can also be problematic, in that many proteins may 
posses the sorting signal by chance alone. For example, 
SWISS-PROT contains twice as many non-perioxisomal 
proteins containing the PTS1 sorting signal than actual 
perioxisome proteins with the PTS1 signal.  
 
Several predictors exist. PSORT [1] is a knowledge-based, 
multi-category program for subcellular location prediction. 
It is often used as the gold standard for such prediction. 
PSORT consists of two different programs: PSORT I 
(predicting 17 subcellular compartments; trained on 295 
proteins) and PSORT II (predicting 10 locations; trained on 
1,080 yeast proteins), each using different algorithms. 
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PSORT I uses “if-then” rules sequentially in a tree-like 
manner. PSORT II scores sequence-derived features for 
each localisation and then predicts using k nearest-
neighbours classification. PSORT II is the more accurate of 
the two methods. Using a test set of 940 plant proteins and 
2,738 non-plant proteins, the accuracy of PSORT I and II 
was 69.8% and 83.2%. PSORT-B is specifically for the 
prediction of bacteria. [2] NNPSL [3] is a neural network 
method that predicts four locations - cytoplasmic, 
extracellular, mitochondrial and nuclear - using amino acid 
composition. 66.1% accuracy was reported for multi-
category prediction. Mitochondrial localisation is predicted 
by MitoProt II [4], which has certain similarities with 
bacterial prediction. When tested on 3,419 human 
mitochondrial proteins obtained from SWISS-PROT, an 
accuracy of 86.7% was reported.         
 
In this paper, we describe the development of an array of 
binary predictors, one for each of the eight Gram+ and 
Gram- bacterial compartments. In contrast to other 
methods, these predictors use a single methodology based 
on Bayesian Networks (BNs), which makes use of the same 
predictive architecture, the same sequence representation, 
and focuses on the same region of the sequence. We have 
also developed a predictor which discriminates between 
soluble and non-soluble proteins. Together these methods 
form a cohesive, integrated, and standardised approach to 
subcellular location prediction. After validating this method 
using cross-validation and test sets, we compared its 
predictivity to that of PSORTB. 
 
Methodology: 
Dataset 
An algorithm was used to mine the bacterial subset of 
SWISS-PROT release 40. [5] Initially, bacterial status was 
confirmed using the OC line code of the SWISS-PROT 
entry. Entries were split into Gram+ and Gram- at the 
superfamily level. The following were assigned as Gram+: 
actinobacteria; deinococcus; thermus; firmicutes; 
planctomycetes; and thermotogae, and the following 
assigned as Gram-: chlamydia; verrucomicrobia; 
cyanobacteria; chloroflexi; fusobacteria; nitrospirae; 
proteobacteria; spirochaetes; chlorobi; and bacteroidete. 
The SWISS-PROT subcellular location descriptions (lines 
labelled CC) were then searched to identify if the 
subcellular location was known. To remove proteins of 
uncertain location, only entries not labelled as ‘potential’, 
‘probable’, ‘hypothetical’, ‘possibly’ or ‘by similarity’, 
were incorporated into the final data-set. A non-redundant 
data-set of proteins was obtained using CLUSTALW. [6] If 
two or more proteins were found to have sequence 
similarity higher than 90% then all but one were removed 
from the data-set. The algorithm and subsequent 
CLUSTALW analysis produced a Gram+ data-set of were 
272 extracellular proteins, 375 membranous proteins and 
1500 cytoplasmic proteins, while the final Gram+ data-set 

contained 185 extracellular, 159 outer membrane, 432 
periplasmic, 273 inner membrane and 2480 cytoplasmic 
proteins. 
 
Single protein class Gram- and Gram+ prediction 
Individual methods were created for all eight bacterial 
locations, both Gram+ (cytoplasmic, membrane and 
extracellular) and Gram- (cytoplasmic, inner membrane, 
periplasm, outer membrane and extracellular). Three 
sequence representations (actual residues, amino acid 
composition, and normalised amino acid composition) and 
six sub-sequence length were used (1-10, 1-20, 1-30, 1-40, 
1-50 and the whole sequence). Each variation of the 
method was used to train a single Näive-Bayes network for 
each of the eight locations, thus 24 BNs were constructed 
per location. For amino acid composition, BNs possessed 
20 input nodes, each representing the raw number or 
normalised percentage residue composition. The number of 
input nodes in the actual residue BNs varies dependent on 
the location. The Gram+ cytoplasmic, membranous and 
extracellular BNs had 1436, 1852 and 1627 input nodes 
respectively. The Gram- cytoplasmic, inner membrane, 
periplasmic, outer membrane and extracellular BNs have 
1368, 874, 1014, 2248 and 1848 input nodes respectively. 
The individual location networks are binary predictors and 
therefore have a single output node that is either on or off 
for the predicted location. 
 
A combined soluble class predictor, able to distinguish 
soluble (cytoplasmic and periplasmic) proteins from all 
other locations, was also created. This was based on 
considering the whole protein using pseudo-amino acid 
composition. [7] Pseudo-amino acid composition is used in 
preference to simple amino acid composition, as it attempts 
to model sequence-order effect. It is calculated using a 
formula that assigns 40 scores to 40 input nodes for each 
sequence: 20 representing normal amino acid composition 
and 20 representing sequence-order effects. The output 
node can possess the values of soluble or non-soluble.  
 
Testing of the networks was performed using their 
respective training sets under five-fold cross-validation. 
Each location-specific network was trained using known 
positive data for that location, while the negative training 
set was all other sequences, except where a location is 
present in both Gram- and Gram+ bacteria i.e. cytoplasmic, 
membrane (in Gram+) and inner membrane (in Gram-), and 
extracellular. For these networks, sequences from the 
equivalent location in the other Gram class were excluded. 
For the soluble predictor, the positive data-set was all 
cytoplasmic and periplasmic sequences obtained from 
SWISS-PROT and the negative data-set was the sequences 
from all other locations. To assess the predictivity of the 
Bayesian approach, the same data-sets were submitted to 
PSORTB. 
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Results and Discussion: 
Results for the eight individual compartments are shown in 
tables 1a, 1b and 2. The most accurate prediction was 
achieved using amino acid composition for the first 50 
residues. Both Gram+ and Gram- predictors achieved their 
best accuracies under the same conditions. Prediction 
accuracy generally increases with increasing sub-sequence 
length from 10 residues to 50 residues, and then tails off 
slightly when the whole sequence is considered. For the 
range of sub-sequence lengths the amino acid composition 
sequence representation consistently outperformed the 
other two representations. The sub-sequence size used 
affects the accuracy in a much more obvious manner. The 
N-terminal compartment sorting signals are present in the 
sub-sequence lengths used in all networks and a method 
that best models the sorting signals will achieve the best 
accuracy.  
 
Unsurprisingly the accuracies of all locations are highest 
when the first 50 residues are considered as this length will 
encompass the full lengths of the vast majority of signal 

sequences. The shorter sub-sequence lengths will only 
consider the n region and possibly part of the h region. The 
variances in n-region charge and, therefore residues, does 
vary from signal peptide types and therefore can be used 
with some degree of accuracy to distinguish between 
different signal peptide types. The h-region also varies in 
length and composition between different signal peptide 
types and therefore when both are considered a higher 
degree of accuracy is achieved.  
 
The performance of the methods was compared to that of 
PSORTB (See Table 3). The individual location methods 
outperform PSORTB with the exception of the Gram+ 
cytoplasmic proteins, in which the accuracies were 
approximately equivalent, and the outer membrane 
proteins, in which PSORTB outperforms the individual 
method. This may be because outer membrane proteins 
have a notoriously variable amino acid composition due to 
TM strands being exposed to both membrane and pore. The 
amino acid composition method therefore may not be 
suitable for the prediction of outer membrane proteins.  

 
Cytoplasmic accuracy 

(%) 
Membrane accuracy 

(%) 
Extracellular 
accuracy (%) 

Sequence 
representation 

Sub-sequence 
length 

Spec Sens Spec Sens Spec Sens 
10 88.42 34.25 73.54 55.25 76.23 42.55 
20 89.84 42.83 72.92 58.03 73.73 38.08 
30 94.52 55.90 84.25 67.06 77.81 65.97 
40 93.6 77.68 89.03 78.94 80.51 81.60 
50  96.78 94.24 96.30 89.51 82.53 93.90 

Amino acid 
composition 

All sequence 91.51 90.82 91.41 80.03 84.91 74.84 
10 52.51 22.36 12.14 1.41 0.04 1.14 
20 63.35 26.51 15.52 6.77 3.62 2.62 
30 64.93 34.99 24.05 9.59 9.27 5.01 
40 68.34 38.27 29.15 17.97 15.73 12.63 
50  69.41 48.15 32.33 16.11 18.42 11.09 

Actual amino 
acids 

All sequence 72.42 58.73 36.87 23.72 16.64 14.78 
10 89.52 29.86 69.93 52.93 77.36 40.42 
20 89.72 38.11 70.95 61.09 78.41 47.73 
30 91.42 44.19 74.01 73.60 82.25 57.80 
40 92.20 61.07 79.44 85.26 81.09 71.03 
50  93.13 79.14 83.10 97.88 83.98 84.76 

Normalised 
amino acid 

composition 

All sequence 90.96 73.77 84.76 93.61 80.15 84.08 
Table 1a: Prediction accuracies of the Gram+ individual location predictors. The results of highest accuracy are 
shown in bold. Specificity refers to the accuracy of prediction from the positive test set while sensitivity refers to 
accuracy of prediction for the negative test set 
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Sequence 
representation 

Sub-
sequence 

length 

Cytoplasmic 
accuracy (%) 

Inner 
Membrane 

accuracy (%) 

Periplasmic 
accuracy (%) 

Outer 
Membrane 

accuracy (%) 

Extra-celluar 
accuracy (%) 

10 98.35 78.42 84.35 48.85 71.14 
20 92.52 81.09 88.89 56.50 76.91 
30 94.99 91.75 90.14 63.88 81.06 
40 96.34 89.33 93.98 69.25 82.37 
50  97.48 96.83 94.57 77.90 87.97 

Amino acid 
composition 

All sequence 91.41 94.79 94.02 73.21 81.96 
10 68.53 64.36 24.79 13.16 52.62 
20 74.52 60.23 33.05 14.93 58.35 
30 77.90 61.85 41.21 17.09 52.70 
40 74.08 66.33 45.82 24.51 55.08 
50  79.76 64.67 53.68 22.74 61.98 

Actual amino acids 

All sequence 73.13 63.16 53.68 25.88 59.22 
10 94.32 77.35 80.41 51.51 71.01 
20 93.45 84.24 83.85 53.86 75.25 
30 93.78 86.94 87.02 57.12 72.09 
40 96.26 90.24 91.97 63.26 73.63 
50  94.78 93.12 93.52 61.03 77.60 

Normalised amino 
acid composition 

All sequence 93.21 91.51 92.87 67.73 74.28 
 Table 1b: Prediction accuracies of the Gram- individual location predictors. The results of highest accuracy are shown in bold 

 
Sequence 

representation 
Sub-

sequence 
length 

Cytoplasmic 
accuracy (%) 

Inner 
Membrane 

accuracy (%) 

Periplasmic 
accuracy (%) 

Outer 
Membrane 

accuracy (%) 

Extra-cellular 
accuracy (%) 

10 51.03 83.52 44.02 37.85 73.31 
20 53.64 81.09 58.23 51.67 76.90 
30 64.07 84.24 62.68 64.69 85.02 
40 81.75 88.31 79.43 77.11 86.42 
50  90.13 94.76 92.01 86.36 92.85 

Amino acid 
composition 

All sequence 88.24 93.41 84.42 86.02 88.22 
10 40.03 53.59 20.52 12.05 23.24 
20 41.49 58.21 23.84 16.73 22.86 
30 48.79 68.84 55.08 22.41 26.72 
40 55.32 61.33 42.21 25.62 30.55 
50  58.62 63.71 49.33 32.41 29.86 

Actual amino 
acids 

All sequence 64.28 59.35 43.57 34.79 30.08 
10 44.63 84.04 41.93 44.32 74.59 
20 48.32 88.68 56.26 46.72 77.35 
30 61.04 87.14 63.17 51.48 81.68 
40 71.38 93.73 71.87 56.37 84.24 
50  77.20 96.26 78.88 68.53 85.32 

Normalised 
amino acid 

composition 

All sequence 83.56 92.47 73.29 59.25 84.99 
 Table 2: Prediction accuracies of the Gram- individual location predictors for the negative test sets. The results of highest         
accuracy are shown in bold 
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Gram-type Subcellular 
location 

PSORTB 
accuracy (%) 

Individual 
location 
predictors 
accuracy (%) 

Cytoplasmic 96.38 96.78 
Membranous 91.47 96.30 

Gram+ 

Extra-cellular 70.42 82.53 
Cytoplasmic 91.37 97.48 
Inner 
membrane 

94.68 96.83 

Periplasmic 84.69 94.57 
Outer 
membrane 

83.70 77.90 

Gram- 

Extra-cellular 77.55 87.97 
 Table 3: Results of the individual method predictions compared to the PSORTB algorithm 

 
Conclusion: 
In the search for viable subunit vaccines, highly accurate 
methods for sub-cellular location prediction, such as the 
set of binary predictors we describe here, can aid reverse 
vaccinology directly. In particular, the soluble predictor 
will significantly reduce the number of sequences that 
must be tested as vaccine targets. This is a breakthrough 
method since cytoplasmic and periplasmic proteins are 
usually predicted as the residue left after positive 
predictions for all other locations. Binary predictors 
discriminate between two classes; they are often more 
accurate than multi-outcome predictors, such as 
PSORTB, which is itself built from several binary 
predictors. We judged the accuracy of our approach and 
that of PSORTB and found that out set of location-
specific methods, which is built on a single underlying 
methodology, compared favourably. However, when 
several binary predictors are used to create a multi-
outcome prediction method, an efficient and effective 
way of combining the disparate outputs is still required. 
Nonetheless, our new BN approach is an important, 
competitive advance in the development of subcellular 
location prediction methods.  It should, it is own right, 
prove a powerful tool for candidate subunit vaccine 
selection. 
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