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Abstract: 
The adaptive alpha-spending algorithm incorporates additional contextual evidence (including correlations among genes) about 
differential expression to adjust the initial p-values to yield the alpha-spending adjusted p-values. The alpha-spending algorithm is 
named so because of its similarity with the alpha-spending algorithm in interim analysis of clinical trials in which stage-specific 
significance levels are assigned to each stage of the clinical trial. We show that the Bonferroni correction applied to the alpha-
spending adjusted p-values approximately controls the Family Wise Error Rate under the complete null hypothesis. Using simulations 
we also show that the use of the alpha spending algorithm yields increased power over the unadjusted p-values while controlling FDR. 
We found the greater benefits of the alpha spending algorithm with increasing sample sizes and correlation among genes. The use of 
the alpha spending algorithm will result in microarray experiments that make more efficient use of their data and may help conserve 
resources. 
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Background: 
Microarray technology has become a widely used and effective 
research tool in modern molecular biology. It can produce a 
snapshot of the expression levels of thousands of genes 
simultaneously at a very low cost per data point. However, 
researchers are often more interested in how biological pathways 
respond to experimental condition changes rather than in 
changes in expression levels of individual genes. The total flux 
through a pathway can change dramatically through subtle 
changes in expression levels of genes involved in that pathway. 
[1] Thus, the prevalence of microarray technology in the 
research of complex metabolic disorders makes the problem of 
identifying genes with subtle differential expression increasingly 
important. Unfortunately, the identification of genes with subtle 
differential expression is challenging due to the huge number of 
genes involved, the noisiness of the data, and the very small 
sample sizes (often not more than 5 observed expression levels 
per gene and/or per treatment group). 
 
Most approaches for identifying differentially expressed genes 
may be of limited power because they neither take into account 
nor capitalize on dependencies among genes. As an alternative, 
we propose an adaptive alpha-spending algorithm that takes into 
account the dependencies of expression levels among genes 
explicitly by assigning gene-specific significance levels to each 
gene. The alpha-spending algorithm is named so because of its 
similarity with alpha-spending algorithms in interim analysis in 
clinical trials. [2] Interim analysis is often carried out at multiple 
times in a clinical trial for reasons such as checking adherence to 

the protocol, economic and ethical reasons. Because in interim 
analysis the same null-hypothesis is tested multiple times, not 
correcting for multiple testing will inflate the type 1 error. 
Multiplicity is controlled in the alpha-spending algorithm by 
assigning stage specific significance levels to each stage in the 
clinical trial such that the sum of stage specific significance 
levels is equal to the overall significance level, i.e., 

αα =∑
=

k

i
i

1
ˆ  with k  the number of stages, α̂ i  the stage-

specific significance level for the i-th stage and α  the global 
significance level. The stage-specific significance level is given 
by ( ) ( )tt iii 1ˆ −−= ααα , where ( ).α  is a monotonic non-

decreasing function with ( ) 00 =α  and ( ) αα =1  called the 

alpha-spending function and ti  is the fraction of information 
accrued in the clinical trial at stage i, a quantity between 0 and 1, 
which is often defined as a function of accrued and planned 
sample sizes in the clinical trial. [3] If, for instance, between 
stages 1−i  and i  many subjects entered the clinical trial, the 

resulting significance level ( ) ( )tt iii 1ˆ −−= ααα  assigned to 
stage i will be relatively high, resulting in a relatively high 

power for that stage. That αα =∑
=

k

i
i

1
ˆ  follows directly from 
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The key assumption underlying our alpha-spending algorithm 
is: if the expression levels of two genes are 
positively/negatively correlated, then one of the two genes is 
an activator/repressor of the other gene. This assumption is 
incorporated into the alpha-spending algorithm by computing 
the gene-specific significance levels in such a way that they 
are proportional to the linear regression predictor computed 
from the correlation matrix of the observed differential 
expression levels and the observed differential expression 
levels of other genes. For instance, if a particular gene A is 
highly positively correlated to many up-regulated genes, then 
this provides additional contextual evidence that gene A is 
also up-regulated. This additional contextual evidence is fed 
back into the alpha-spending algorithm by assigning a higher 
significance level to gene A. Similar to alpha-spending in 
clinical trials, the gene-specific significance levels 

αα ˆ,ˆ1 kK  are computed such that they satisfy the condition 

αα k
k

i
i =∑

=1
ˆ  in order to provide a mechanism for 

controlling the number of false positives. It can be seen that 
the alpha-spending algorithm controls the FWER in the weak 
sense. By this we mean that, under the global null-hypothesis 
that all genes are non-differentially expressed, the Bonferroni 
correction applied to the alpha-spending adjusted p-values 
controls the FWER. This approximate weak control of the 
FWER follows directly from Bonferroni’s inequality 

αα =≤∑
=

k

i
i k

1
FWER  where α i  is the population 

quantity from which α̂ i  can be regarded as an estimate. The 
alpha-spending adjusted p-values will be derived in the next 
section. The alpha-spending adjusted p-values will be derived 
in the next section. 
 
Methodolgy: 
The gene-specific significance levels are based on a 
prediction equation similar to the linear regression prediction 

equation ( )xxDRRyy y xxxxyxy −+=
−− ˆˆˆ*ˆˆ 1

,

1

,| σ  of an 

outcome variable y  and a vector of predictor variables x , in 
the case that multivariate normality can be assumed for 
y and x . In this prediction equation y xyˆ |  and y are the 

predicted outcome and sample average of y , R xyˆ , the row-

vector containing the observed correlations between y  and 

x , R xxˆ ,
1−

 the inverse correlation matrix of x , σ̂ y  the 

standard error of y  and Dxˆ 1−  the diagonal matrix containing 
on its diagonal the reciprocals of the standard errors of the 

sample mean vector x of x . Because y  can be interpreted 
as the predicted outcome in case the values of the predictor 

variables are unknown, the term ( )xxDR yxxx −−−
σ̂ˆˆ 1

,

1
 

can be interpreted as the predictive information from the 
observed values of x for y. 
 
Similar to the predictive information 

( )xxDR y xxx −
−− ˆˆˆ

1

,

1
σ  above, we will derive predictive 

information for the unknown population differential 
expression level δ i  for gene i, from the observed differential 

expression levels ( )δ̂ i−  of the genes other than gene i, the 

row-vector ( )i−φ̂  containing the correlations between the 

observed expression level δ̂ i  and ( )δ̂ i− , the inverse 

correlation-matrix ( )i−Φ
−ˆ 1

 of ( )δ̂ i− , the standard error 

ψ̂ i  of δ̂ i  and the standard errors of ( )δ̂ i− . Under the 

assumption that the k-vector ( )δδδ ˆ,,ˆˆ
1 k

T
K= has a 

multivariate normal distribution with the unknown population 

differential expression levels ( )δδδ k
T

,,1 K= as mean 

vector and Σ as variance-covariance matrix, we can write a 
similar prediction equation for the predicted differential 
expression level δ~i  as 

( ) ( ) ( ) ( ) ( )( )δδψφδδ iiiiii iii −−

−− −−Ψ−Φ−+= ˆˆˆˆˆ~ 211

. In this equation ( )δ i−  is the ( )1−k  vector containing the 
population differential expression levels of all genes other 

than gene i, and ( )i−Ψ
−ˆ 21

 is a diagonal matrix containing 

the reciprocals ψ̂1 2
jj  of standard errors ψ̂ jj of ( )δ̂ i− . 

Because ( )δ i−  is an unknown vector, we will rewrite this 
prediction equation into 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )δψφδψφδδ iiiiiiii iiiiii −
−−

−

−−
−Ψ−Φ−−−Ψ−Φ−+= ˆˆˆˆˆˆˆˆˆ~ 211211

 and will use ( ) ( ) ( ) ( )δψφπ ˆˆˆˆˆˆ
211

iiii iii −

−−
−Ψ−Φ−=  as 

our predictive information. This predictive information π̂ i  
for gene i can be interpreted as the inproduct between the 

correlations ( )i−φ̂  between the differential expression level 
of gene i and the differential expression level of all genes 
other than gene i, and the differential expression levels ( )δ̂ i−  

of gene i adjusted for the standard errors and correlation 
matrix of ( )δ̂ i− , and the standard error of δ̂ i . If, for 
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instance, gene i is strongly positively correlated to highly up-
regulated genes then there is contextual evidence that gene i is 
also up-regulated and this contextual evidence is incorporated 
by a relatively large positive value ofπ̂ i . Because the p-value 
for the differential expression of a gene depends on the 
absolute value of its differential expression, our gene-specific 

significance level will be defined as πα ˆ*ˆ ii c= , where 

c is a constant. In order to provide a mechanism for 
controlling the number of false positives we will chose 

π̂1=c  with ∑
=

=
k

i
ik 1

ˆ
1ˆ ππ  so that αα =∑

=

k

i
ik 1

ˆ
1

, 

i.e., the average gene-specific significance level is equal to the 
global significance level α . The alpha-spending adjusted p-

value pi
+

 for differential expression of gene i will be defined 

as ( ) pp iii αα ˆ=+
 with pi  the original p-value for 

differential expression of gene i. It can be easily verified that 

α≤+pi  is equivalent with α̂ iip ≤  so that indeed α̂ i  is 
the gene-specific significance level for gene i. To the alpha-
spending adjusted p-values any method for multiplicity 
control may be applied. 
 
Discussion: 
We have proposed an adaptive alpha-spending algorithm for 
finding differentially expressed genes in microarray data sets 
in which observed dependencies among genes are 
incorporated by assigning gene specific significance levels to 
each gene. We think this procedure may increase the power in 
finding differentially expressed genes. The constraint 

αα =∑
=

k

i
ik 1

ˆ
1

 provides a mechanism for controlling the 

number of false positives. We have shown that the alpha-
spending algorithm provides approximately weak control of 
the FWER. 
 
To further investigate power of alpha-spending procedure and 
its ability to control the number of false positives we have 
conducted a simulation study with a relatively small number 
of genes ( 700=k ) with two treatment groups of equal 
sample sizes. The alpha-spending algorithm was applied to 
the equal variances t-test for comparing the two groups using 
the within group correlation among genes as contextual 
information. We assessed the Per Comparison Error Rate 
(PCER) under the complete null, i.e. all genes are non-
differentially expressed, as well as the partial null, some 
genes are non-differentially expressed but not all. We also 
evaluated the False Discovery Rate (FDR) defined in [4] 

under the partial null only and the power improvement in 
special circumstances. The PCER is the expected number of 
false positives divided by the number of truly differentially 
expressed genes. The FDR is defined as 

( )00| >⎥⎦
⎤

⎢⎣
⎡ > RPR

R
VE , where V is the number of 

false positives and R the number of genes declared 
significant. The FDR can be loosely interpreted as the 
proportion of false positives among all genes declared 
significant. For all simulation parameter settings, simulated 
data sets were generated from which 20% of the genes were 
correlated with the same correlation coefficient ρ  and the 
remaining 80% of the genes were not correlated and not 
correlated with the group of correlated genes either. The ρ  

parameter was varied ( 7.0,5.0,3.0=ρ ) and the group 

size n  was also varied ( 10,6,4=n ). Under the partial 

null, the population mean difference ( )β−Δ=Δ 1  of the 
20% correlated genes was varied such that the corresponding 
power of the ordinary t-test was varied by 

8.0,7.0,6.0,5.0,4.0,3.0,2.01 =− β  and the 
remaining 80% other genes were non-differentially expressed. 
All simulated microarray data sets were generated from a 
multivariate normal distribution. 
 
Our simulation study confirms that the alpha-spending 
algorithm controls the PCER and FDR in many practical 
situations. Under the complete null, the PCER was controlled 
with respect to all genes overall as well as for the group of 
uncorrelated genes. For the group of correlated genes, the 
PCER tended to be inflated (Table 1). Under the partial null, 
the PCER was controlled in all simulation parameter settings 
and the FDR was controlled in most of the simulation 
parameter settings (Figure 1). The observed PCER decreases 
for increasing group-size and correlation, but this relationship 
was not seen in the observed FDR. On average the alpha-
spending algorithm improves the power and this power 
improvement increased for increasing group size or increasing 
correlation. The power improvement can be up to 47% for 

0.7ρ = and 6n =  (Figure 2). However the power 
improvement varied substantially across individual simulated 
data sets. For lower values of ρ  and n  power decreased for 
some simulated data sets and this decrease in power was up to 
15% for 0.3ρ =  and 4n = . For 6n ≥ the alpha-spending 
algorithm seemed to have added value. We also increased the 
number of genes in the simulation to 2000 for some cases; the 
results are very similar to what was obtained for the 
simulations with 700 genes.
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  Correlated genes Uncorrelated genes All genes 
ρ  n  0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 

0.3 4 0.0092 0.0506 0.1044 0.0099 0.0483 0.0966 0.0098 0.0487 0.0982 
0.3 6 0.0136 0.0689 0.1362 0.0095 0.0466 0.0938 0.0103 0.0510 0.1023 
0.3 10 0.0117 0.0660 0.1316 0.0098 0.0463 0.0928 0.0102 0.0502 0.1006 
0.5 4 0.0111 0.0663 0.1333 0.0091 0.0466 0.0932 0.0095 0.0505 0.1012 
0.5 6 0.0175 0.0864 0.1664 0.0085 0.0421 0.0849 0.0103 0.0510 0.1012 
0.5 10 0.0238 0.1006 0.1849 0.0081 0.0437 0.0875 0.0112 0.0551 0.1070 
0.7 4 0.0326 0.1078 0.1908 0.0088 0.0450 0.0897 0.0136 0.0575 0.1099 
0.7 6 0.0126 0.0794 0.1723 0.0088 0.0433 0.0864 0.0096 0.0505 0.1036 
0.7 10 0.0353 0.1265 0.2249 0.0079 0.0389 0.0813 0.0134 0.0564 0.1101 
Table 1: Observed PCER for the alpha-spending post-processed p-values estimated for correlated genes, uncorrelated genes, and 
all genes under the complete null hypothesis that all genes are non-differentially expressed. The number of genes in each 
simulation was 700 and the nominal alpha levels of 0.01, 0.05, and 0.1 were used for identifying differential genes. In each 
simulation parameter setting ( )n,ρ  the observed PCER was estimated from 100 simulated data sets 
 

 
Figure 1: Observed PCER and observed FDR of the alpha-spending algorithm as a function of power of the ordinary t-test for 
different correlations 7.0,5.0,3.0=ρ  and different group sizes 10,6,4=n  for 700=k . The number of genes in 
each simulation was 700 and the nominal alpha levels of 0.05 was used for identifying differential genes. A thin dashed black 
line, a solid blue line, and a thick red line refer to a correlation ρ  of 0.3, 0.5, and 0.7, respectively. The group sizes of 4, 6, and 

10 are represented by circles, squares, and triangles, respectively. In each simulation parameter setting ( )n,ρ  the observed 
PCER was estimated from 100 simulated data sets 



Bioinformation by Biomedical Informatics Publishing Group                                         open access 
www.bioinformation.net                      Prediction Model 
_____________________________________________________________________________________________  

ISSN 0973-2063 
Bioinformation 1(10): 384-389 (2007) 

Bioinformation, an open access forum 
                                                                                                                                                         © 2007 Biomedical Informatics Publishing Group 
 

 

388

 
Figure 2: Power improvement of alpha-spending p-values with respect to the ordinary t-test. The results are from the partial null 
hypothesis simulations with 20% of the genes differentially expressed and correlated with the same correlation coefficient ρ  and 

80% of the genes non-differentially expressed and uncorrelated. For 700=k , the 1007700 ×=  simulated data sets per 
plot were obtained by independently generating 100 data sets for each of seven different values of the population mean 
differential expressionΔ . These seven values of ( )β−Δ=Δ 1  were obtained such that the corresponding power of the 

ordinary t-test in detecting the differentially expressed genes was varied by 8.0,7.0,6.0,5.0,4.0,3.0,2.01 =− β . For 

2000=k  the 30 simulated data sets correspond to 5.01 =− β  only. The situation 2000=k  is simulated for 

6,4=n but not for 10=n  
 

The above mentioned opposite relationships between ρ  and n  
on one side and power improvement and observed PCER on the 
other side, can be explained by 

⎥
⎦

⎤
⎢
⎣

⎡
+⎥
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= ∑∑∑

∈∈= NDEDE1
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i

k

i
i EEEk αααα , where 

DE represent the set of truly differentially expressed genes 
and NDE represent the set of truly non-differentially expressed 

genes. An increase in power means an increase of ⎥
⎦

⎤
⎢
⎣

⎡∑
∈DE

ˆ
i

iE α , 

which results in a decrease of ⎥
⎦

⎤
⎢
⎣

⎡ ∑
∈NDE

ˆ
i

iE α and thus a decrease 

in PCER. This relationship was not found for FDR, which was 
possibly due to simulation error in estimating FDR as a 
consequence of the large variation in the number of genes 
declared differentially expressed across different simulated data 
sets (see Figure 2). The inflation of the PCER among correlated 
genes under the global null may be explained by the fact that 

π i  increases for increasing correlations between the i-th genes 

and other genes. Because of αα =∑
=

k

i
ik 1

ˆ
1

, the type 1 error is 
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inflated for the correlated genes and deflated for the 
uncorrelated genes. This situation highlighted that the alpha-
spending algorithm may be more likely to detect spurious 
findings in case of strong correlations among many non-
differentially expressed genes. A topic of future research is to 
investigate whether this situation can be ameliorated by 
developing adjustment procedures for the gene-specific 
significance levels in which lower gene-specific significance 
levels are assigned to genes with lower observed differentially 
expression levels. Another topic of future research is the 
improvement of the power of the alpha-spending algorithm by 
the application of Empirical Bayes techniques [5] to the 
estimation of differential expression levels [6], correlations 
among differential expression levels [7], and the standard error 
of differential expression levels. [8] A simulation study reported 
that the mean squared error of EB estimates of differential 
expression levels is as low as 0.05 times that of the ordinary 
least squares estimators. [6] Finally, because the number of 
genes often runs in the ten thousands, the inversion of the 

correlation matrix R xxˆ ,
1−

 is extremely computationally 
intensive and may require a super-computer. The approximation 

of R xxˆ ,
1−

 by easier to invert block-diagonal matrices based on 
clustering of the genes might be investigated for the purpose of 
more practical use of the alpha-spending algorithm. 

 
Conclusion: 
We have proposed an adaptive alpha-spending algorithm for 
finding differentially expressed genes in microarray data sets in 
which observed dependencies among genes are incorporated by 
assigning gene specific significance levels to each gene. We 
have shown that the alpha-spending algorithm approximately 
controls the FWER under the complete null. In a simulation 
study we have illustrated that the alpha-spending algorithm 
controls the PCER and FDR and improves the power when 

applied to the ordinary t-test under special circumstances within 
the two group comparisons with equal group sizes. However, 
there may be situations in which the PCER is inflated as was 
shown for the correlated genes under the complete null. 
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