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Abstract: 
In this paper we propose a data based algorithm to marry existing biological knowledge (e.g., functional annotations of 
genes) with experimental data (gene expression profiles) in creating an overall dissimilarity that can be used with any 
clustering algorithm that uses a general dissimilarity matrix. We explore this idea with two publicly available gene 
expression data sets and functional annotations where the results are compared with the clustering results that uses only the 
experimental data. Although more elaborate evaluations might be called for, the present paper makes a strong case for 
utilizing existing biological information in the clustering process.  
 
Availability: Supplement is available at www.somnathdatta.org/Supp/Bioinformation/appendix.pdf 
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Background: 
Clustering is routinely used in the exploratory phase of a 
microarray experiment. Genes are clustered using the 
pairwise correlation coefficients between two sets of 
expression profiles as a measure of similarity or closeness. 
With the growing annotation databases, it is perhaps wise 
to take advantage of the functional class information of the 
annotated genes along with the experimental data in 
grouping genes. Unlike, other approaches (e.g., [1]), the 
purpose of this paper is to outline a general approach of 
modifying the distance itself. Thus, in a sense, we do not 
propose a new clustering algorithm - any classical 
clustering algorithm can be applied based on the new 
distance (or dissimilarity) matrix. We illustrate this 
procedure using the agglomerative hierarchical clustering 
UPGMA and the divisive hierarchical clustering algorithm 
DIANA applied to two gene expression data sets. 
 
Methodology: 
Biological Information  
Let },...,,{ 21 lG xxx= be the set of all gene 
expressions resulting from a microarray experiment, such 
that xi∈Rp for some p. Let also F1, F2,……….,Ff  be not 
necessarily disjoint sets of labels corresponding to genes 

with similar biological functions, and  ℑ = j
f
j F1=U  . 

Note that not all studied genes are functionally annotated, 
thus ℑ⊂ G. Let also ℑ−=ℑ G , be the set of 
unannotated genes. We propose modified distance function 
that utilizes this prior functional information and promotes 
clusters of functionally similar genes. 
 
Many clustering algorithms are based on the matrix of 
distances between each pair of elements (gene expressions). 
We propose to modify the distance matrix using the 

information expressed in the sets of biological functions in 
order to improve clustering results. The presented approach 
can be used in combination with any distance matrix-based 
clustering method. 
 
Our new distance (or dissimilarity to be mathematically 
accurate) combines measurements (gene expressions) and 
prior information (functional sets). The distance ijD  

between two genes with expression levels ix  and jx  is 

composed of two parts: 1) the measurement distance M
ijd  

computed with the gene expressions, and 2) functional 

distance F
ijd  that is based on the prior biological 

functional information: 

     
F
ij

M
ijij ddD +=                           (1) 

 
This new similarity metric (1) corresponds to distances 
used by semi-supervised clustering techniques in Machine 
Learning. [2] In our case the functional distance plays the 
role of the similarity-adapting function. Therefore the 
measurement distance is computed in the same fashion as 
in the case of standard clustering of gene expressions, and 
the role of the functional distance is to alter similarities 
between the gene expressions so that the resulting clusters 
are in agreement with the functional annotation of genes. 
Because one of the purposes of cluster analysis of gene 
expressions is prediction of previously unknown functions 
of genes, it is desired that: 1) genes with similar functions 
appear in the same cluster, and 2) genes with unknown 
functions appear in clusters where majority of genes have 
known and similar function. In order to satisfy the 
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presented goals the distance matrix needs to be altered so 
that: 

(1) distance between genes with similar functions is 
smaller than between genes with different 
functions,  

(2) distance between a pair of annotated and 
unannotated genes is smaller than between two 
unannotated genes,  

(3) distance between genes with different functions is 
larger than between two unannotated genes. 

Thus the functional distance is composed of the three parts 
that correspond to the above tasks:  
 

 ),(min IJdddd F3F2F1F −−++= d           (2) 
 
Where J is an arbitrary size matrix of ones, I is the identity 
matrix, and 

}{min 331
,min

F
ij

F
ij

F
ij

M
ijji ddddd +++= , added in 

order to ensure that jiddD F
ij

M
ijij ,,0 ∀≥+= .                                   

Each element on the right hand side of (2) modifies 
distances between a group of genes. Computation of               

,, 21 FF dd and 3Fd  is presented below. 
 
Decreasing the distance between genes with similar 
functions 
The often overlooked difficulty in assessing gene similarity 
is the lack of clear structure in the public gene ontology 
data bases. Some functions are more general than others 
and some functions are sub-functions of others. As a 
solution to this problem we assume that genes are more 
similar if they share more functions. Let F be a binary 
matrix that represents gene membership in the functional 
sets or lack of functional annotation: 
 

⎩
⎨
⎧

=
ℑ∈∈ ii

ik

k

F
or    if 1

,otherwise  0

F

                           (3) 

 
Then the distance between genes with similar biological 
functions is modified by the first element of (2) that is 
given by: 

⎩
⎨
⎧

=
≠− jifor

F
ij

T
ji

d
FF  

,otherwise 0
1

α

                          (4) 

 
where α is a diagonal matrix of scaling coefficients for each 
functional set. The scaling coefficients α are introduced 
because distance variance may vary across functional sets. 
 
Increasing distance between unannotated genes 
Because the purpose of gene expression clustering is to 
predict functions of genes not studied previously, it is 

desired that the unannotated genes are placed into clusters 
composed primarily of genes with known functional 
annotations. Increasing distances between unannotated 
genes will result in change of the behavior of a clustering 
algorithm. The annotated genes will be clustered earlier and 
will thus form basis of functional clusters to which 
unannotated genes will later be assigned. Because the only 
accessible information about unannotated genes are their 
expressions, F2d  should not alter the relative distances 
between expressions of unannotated genes. Adding a 
constant to the distance between each pair of unannotated 
genes will satisfy the goal without changing the properties 
of the data. The element modifying the distance matrix that 
accomplishes this task is equal to: 

⎩
⎨
⎧=

≠ jiforuu
F
ij

ji

d
β

,otherwise0

2
                           (5) 

 
where u is a binary vector that denotes genes whose 
biological functions are not known a priori: 
 

⎩
⎨
⎧

=
ℑ∈iif

iu
1

,otherwise0
                                    (6) 

 
and β is a scaling factor that controls the magnitude of the 
increase of the distance between a pair of unannotated 
genes. 
 
Increasing the distance between genes with different 
functions 
The previous paragraph presents the modification of 
distance matrix that increases distances between all pairs of 
unannotated genes so that clusters composed primarily of 
genes with unknown functions are avoided. However the 
set of unannotated genes may contain genes with similar 
functions that should be placed in the same clusters. The 
modified distance matrix counteracts assigning 
twounannotated genes to one cluster. In the absence of 
functional information of unannotated genes, it is not 
known how the distances between unannotated genes 
should be altered. Gene expressions and functional 
information of annotated genes provide the only accessible 
knowledge about the unannotated genes. Thus the distances 
between annotated genes that have different functions will 
be increased so that unannotated genes with similar gene 
expressions can be placed in the same cluster. The distance 
matrix is updated by: 
   

 )),sign(γ( TFF1dF3 −=                  (7) 
 
where γ is a scaling factor. 
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Selection of parameters  
The new updated distance matrix depends on the values 
of the parameters α, β, and γ. These are found by 
considering the constraints imposed on the distances 
between genes that lead to formulation of the functional 
distance. The mathematical details are provided in the 
supplement.  
 
In the first step, α is found using the set of annotated 
genes ℑ . The functional distance should alter Md  so 
that for each function k, the expected distance between 
genes ki F∈  and kj F∈  is smaller or equal to 

distance between ki F∈  and kj F−ℑ∈  (that does 
not have function k). Thus α is found as a solution of the 
following linear programming problem: 
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where ( ){ }kk
k jijiN FF −ℑ∈∈= ,:,0 , 

( ){ }jijijiN k
k ≠∈= ,,:,1 F ,   ⋅  

indicates cardinality of a set, and C ≥  0 is a user-
specified constant that relaxes the constraints in (8) in 
the case when a data set does not satisfy them with C = 
0. Arbitrarily large C will result in =kα  0 for each k. 
In a typical case C = 0 and should be increased only if 
the constraints are not satisfied for C = 0. 
 
Let us now consider the remaining two goals presented 
in the previous section. The maximal distance between 
genes ℑ∈i  and ℑ∉j  is smaller or equal than the 

minimal distance between ℑ∉i  and ℑ∉j . Also, the 

maximal distance between genes ℑ∉i  and ℑ∉j  is 
smaller or equal to the minimal distance between genes 
that do not share any functions. The above constraints 
lead to the following expressions for  β and γ: 
 

}0,'max{
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γγ
ββ

=
=

                                                 (9)                                        

where 'β  and 'γ  are given by: 
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and 
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where F1d is computed with α resulting from (8). The detailed 
derivation of the above presented equations is given in the 
supplemental document. 
 
Note that this constrained distance matrix controls the behavior 
of a clustering algorithm. The annotated genes that belong to the 
same functional sets are the closest to one another and thus 
create basis of clusters. Then genes with unknown functions are 
assigned to clusters created by annotated genes. Because (5) and 
(7) increase the distances between unannotated genes and genes 
that do not share any function by a constant, cluster assignment 
is delayed but performed on the basis of gene expressions. 
 
Results: 
Two illustrative examples of clustering gene expression data are 
included here. We compare the results of two distance based 
clustering algorithms – UPGMA and DIANA that utilize the 
proposed distance matrix FM dd + with prior functional 
information with those of the respective clustering algorithms 
based on distance matrix computed only with gene expressions 

Md . We measure biological validity of clustering results and 
the distribution of functions in gene clusters. Two publicly 
available sets of gene expressions and functional annotations 
obtained from public databases are used. The detailed 
description of data sets and performance measures is presented 
below. 
 
Data 
Two publicly available sets of gene expressions: 1) Yeast time 
course cDNA, and 2) Normal versus breast carcinoma, SAGE 
data, are utilized in our illustration.  
 
Yeast time course cDNA data  
This set of gene expressions was collected by Chu et al. and 
presented in [5]. This data set records expression profiles 
during sporulation of Saccharomyces cerevisiae at seven 
time points. The original data set was filtered using the 
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same criterion as in [5]. We consider a subset of 513 genes 
(ORF’s to be correct) that were overall positively expressed 
(i.e.,∑    time

log expression ratio > 0). 

 
As in [4], the sets of functional classes were obtained using 
the web-based GO mining tool at 
http://mips.gsf.de/proj/funcatDB/search main frame.html. 
Overall, 342 of the 513 genes were annotated into the 
following sixteen functional classes: metabolism (121 
genes), energy (25), cell cycle and DNA processing (140), 
transcription (45), protein synthesis (9), protein fate (66), 
protein with binding function or cofactor requirement (73), 
protein activity regulation (15), transport (57), cell 
communication (11), defense (36), interaction with 
environment (27), cell fate (11), development (11), 
biogenesis (69), cell differentiation (72). 
 
Normal versus breast carcinoma, SAGE data 
The second data set comes from the study presented in [6]. 
We illustrate our methods using the expression profiles of 
258 genes (SAGE tags) that were judged to be significantly 
differentially expressed at 5% significance level between 
four normal and seven ductal carcinoma in situ (DCIS) 
samples. Abba et al. [6] combined various normal and 
tumor SAGE libraries in the public domain with their own 
SAGE libraries and used a modified form of t-statistics to 
compute p-values. Further details can be obtained from 
their paper and its supplementary web-site. The functional 

classes were constructed using a publicly available web-
tool called Amigo (http://www. godatabase.org/cgibin/ 
amigo/go.cgi). As in [4], a total of 113 SAGE tags were 
annotated into the following eleven classes of molecular 
function based on their primary biological functions. They 
were as follows: cell organization and biogenesis (24), 
transport (7), cell communication (15), cellular metabolism 
(48), cell cycle (6), cell motility (7), immune response (7), 
cell death(7), development (5), cell differentiation (5), cell 
proliferation (5). 
 
Clustering algorithms and distance metric 
The Unweighted Pair Group Method with Arithmetic mean 
(UPGMA) and Divisive Analysis (DIANA) were applied to 
the two illustrative data sets. The following expression 
 

( )( ) ,2/,1 ji
M
ij rd xx−=                         (12) 

 
where ),( jir xx is the correlation coefficient of two gene 

expressions ix and jx , was used as the dissimilarity 

measure. The values of parameters α, β, and γ utilized for 
computation of the functional distance (2) for yeast and 
SAGE data are presented in Tables 1 and 2, respectively. 
These were calculated using our algorithm stated in the 
Methods section (c.f., (8)-(11)). 

 
Parameter Value 

α1 0 
α2 0.0683 
α3 0.0005 
α4 0.0185 
α5 0 
α6 0 
α7 0 
α8 0.0302 
α9 0 
α10 0 
α11 0 
α12 0.0176 
α13 0 
α14 0 
α15 0.1406 
α16 0 
β 0.9542 
γ 1.8764 
c 0 

Table 1: The values of the parameters α, β, and γ used for computation of functional distance for the yeast gene expressions 
 
In order to demonstrate how the distances between genes 
change we selected six genes: YBL043W, YBR168W that 
belong to the biogenesis functional set, YGL210W that 
belongs to both biogenesis and transport functional groups, 
YAL067C from transport group, and YAL018C, YBL010C 

both unannotated. The measurement distances between the 
listed genes are presented in Table 3. Note that YAL067C 
that belongs to the transport group is, according to gene 
expressions, more similar to YBL043W and YBR168W 
that belong to biogenesis group than to YGL210W, which 
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also belongs to the transport group. Note also that the two 
unannotated genes YAL018C and YBL010C are more 
similar to each other than the genes from the biogenesis or 
the transport functional group. 
 
The functional dissimilarities between the selected six 
genes are shown in Table 4. The complete functional 
distance (2) is not listed in Table 4 so that the change with 
respect to Md can be observed. The parameter kα is equal 
to 0 for the biogenesis group and 0.0302 for the transport 
group. The similarities between the genes from the 
biogenesis group are not changed. The distance between 
YGL210W and YAL067C (that belong to the transport 

group) is decreased and that between the unannotated genes 
YAL018C and YBL010C is increased. The distances 
between annotated genes that do not share any functions 
YAL067C and YBL043W, as well as YAL067C and 
YBR168W are also increased. 
 
The resulting new distances between the selected genes are 
given in Table 5, where the distance between the 
unannotated genes YAL018C and YBL010C is larger than 
between genes that share a function: YBL043W, 
YBR168W, YGL210W, but smaller than between 
annotated genes that do not share any function, such as 
YBL043W and YAL067C. 

 
Parameter Yeast 

α1 0.0377 
α2 0 
α3 0.1166 
α4 0.0089 
α5 0 
α6 0 
α7 0.01 
α8 0.0322 
α9 0 
α10 0 
α11 0 
β 0.9816 
γ 1.9478 
c 0 

Table 2: The values of the parameters α, β, and γ used for computation of functional distance for the SAGE gene expressions 
 

 YBL043W YBR168W YGL210W YAL067C YAL018C YBL010C
YBL043W 0.00 0.55 0.45 0.17 0.55 0.46 
YBR168W 0.55 0.00 0.11 0.26 0.10 0.14 
YGL210W 0.45 0.11 0.00 0.29 0.08 0.02 
YAL067 0.17 0.26 0.29 0.00 0.25 0.29 
YAL018 0.55 0.10 0.08 0.25 0.00 0.05 
YBL010 0.46 0.14 0.02 0.29 0.05 0.00 

Table 3: Measurement dissimilarities M
ijd , between 6 selected genes from the yeast data set that belong to the following 

functional groups: biogenesis (2), biogenesis and transport (1) , transport (1), unannotated (2) 
 
Performance measures  
We compare the performance of the resulting clusterings with 
the following two measures: 1) distance from model profiles 
and 2) average proportion of functions in clusters. These 
quantities are described below. A more extensive comparison 
along the lines of [7] or [8] might be possible but is deemed to 
be beyond the scope of this paper. 
 
Distance from model profiles 
The distance from model profiles, proposed in [3], measures 
biological validity of statistical clusters. Model profiles are 
created from a small group of hand-selected genes that were 
available from the original studies and classified into 
biological classes as deemed appropriate by the biologists for 

that particular experiment. The gene expressions averaged 
over each class create the model profiles. The averaged gene 
expressions are also calculated for each cluster, and the 
distance between so created profiles and the model profiles is 
computed: 
 

( ),,min
1

)(∑
=

=
K

i
i

m
iddist ππ

xx                          (13) 

 
where d(.,.) is a dissimilarity measure, K is the number of 
clusters and the minimum is taken over all permutations π of 
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integers {1,2,…..,K}, and m
ix is the (average) model profile 

for the i-th cluster. The expression (12) for a dissimilarity was 
also used here. Smaller dist indicates that resulting clusters 
are more similar to the model profiles thus more biologically 
valid. Datta and Datta [3] proposed to use the model profiles 
as a benchmark for result produced by a clustering algorithm. 
In the original paper, Chu et al. [5], determined on the basis of 
first induction of expression that seven is the right number of 
clusters to be used for grouping genes for this data set. In 
addition they created a model expression profile by using 
certain handpicked genes in each class. We use the same 
number of clusters (K = 7) and the benchmark model profile. 
The genes used for construction of model profiles have no 
functional information assigned. The distance from model 
profiles (13) was computed for the yeast data clustered with 

UPGMA and DIANA using Md and FM dd + as distance 
matrices. The resulting values of dist are presented in Table 6. 
The same performance measure was computed for the SAGE 
data set. The model profiles were composed of genes reported 
in [6], whose deregulation is altered in the ductal carinoma in 
situ stage of breast cancer. Three model clusters were created 
from the following functional classes: Cell cycle (3 genes), 
Apoptosis (3), and Cytokines (4). The values of the distance 
from model profiles, computed for the SAGE data set 
clustered with UPGMA and DIANA are presented in Table 7. 
 
Incorporation of the functional information into the distance 
(dissimilarity) matrix decreased the distance from model 
profiles in all but one cases (Table 6) indicating a closer 
agreement with the selected profiles. 

 
 YBL043W YBR168W YGL210W YAL067C YAL018C YBL010C

YBL043W 0.00 0.00 0.00 1.88 0.00 0.46 
YBR168W 0.00 0.00 0.00 1.88 0.00 0.14 
YGL210W 0.00 0.00 0.00 -0.03 -0.03 -0.03 
YAL067 1.88 1.88 -0.03 0.00 -0.03 -0.03 
YAL018 0.00 0.00 -0.03 -0.03 0.00 0.68 
YBL010 0.00 0.00 -0.03 -0.03 0.68 0.00 

Table 4: Functional distances not corrected for negative 321 F
ij

F
ij

F
ij ddd ++ between 6 selected genes, from the yeast data 

set, that belong to the following functional groups: biogenesis(2), biogenesis and transport (1), transport (1), unannotated (2) 
 

 YBL043W YBR168W YGL210W YAL067C YAL018C YBL010C 
YBL043W 0.00 0.76 0.67 2.26 0.77 0.67 
YBR168W 0.76 0.00 0.32 2.35 0.31 0.36 
YGL210W 0.67 0.32 0.00 0.47 0.27 0.21 
YAL067C 2.26 2.35 0.47 0.00 0.44 0.48 
YAL018C 0.77 0.31 0.27 0.44 0.00 0.95 
YBL010C 0.67 0.36 0.21 0.48 0.95 0.00 

Table 5: Biologically motivated distance F
ij

M
ij dd + between 6 selected genes in Table 3 from the yeast data set that belong to 

the following functional groups: biogenesis (2), biogenesis and transport (1), transport (1), unannotated (2) 
 
 

Distance from model profiles for distance 
matrix 

Clustering 
algorithm 

Md  FM dd +  
UPGMA 0.1077 0.1218 
DIANA 0.0822 0.0604 

Table 6: Distance from model profiles computed for the yeast data set clustered with UPGMA and DIANA using measurement 
and functional distances 
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Distance from model profiles for distance 
matrix 

Clustering 
algorithm 

Md  FM dd +  
UPGMA 0.4753 0.2307 
DIANA 0.4887 0.2433 

Table 7: Distance from model profiles computed for the SAGE data set clustered with UPGMA and DIANA using 
measurement and functional distances 
 
Average proportion of functions in clusters 
The average proportion of functions in clusters assesses the 
ability of a clustering algorithm to group genes with similar 
biological functions into the same clusters. For a given 
number of clusters K, the proportion of the largest group of 
genes with common biological function is found in each 
cluster. The performance measure is given by the average 
proportions weighted by the number of elements in a 
cluster: 
 

,max1)(
,...,2,11 m

km

fk

K

m
m D

D
D

l
KE

F∩
=

==
∑         (14)                                    

where mD  denotes the m-th cluster of genes. The value of 
E(K) closer to 1 indicates that a majority of genes in the 
clusters belongs to one functional set, therefore denotes 
better clustering performance. Only the genes with known 
biological functions are used for computation of (14). Note 
however that all genes are clustered, but only the annotated 
ones are used for performance assessment. If a gene 
belongs to more than one functional set, it is considered in 
finding proportion of all those sets. 
 
Note that E(1) is the proportion of the largest functional 
group in the entire set of genes under consideration and is 
independent of a clustering algorithm. A plot of E(K) vs. K 
can be used to compare the effectiveness of clustering 
algorithm. Generally speaking, a rapidly increasing curve 
reaching values close to 1 would indicate better clustering 
results. 
 
The average proportion of functions in clusters (14), 
computed for the yeast gene expressions clustered with the 
UPGMA and DIANA algorithms are presented in Figs. 1 
and 2, respectively. The performance measure was 
computed for K = 1…,10. The average proportion of 
functions in Fig. 1 for the proposed distance matrix 

FM dd +  is larger than for the distance Md computed only 
with gene expressions. Note also that the performance of 

UPGMA with Md  as a distance matrix is stable for K = 
2,…,10. Thus consecutive divisions of clusters into smaller 
parts do not improve the distribution of functions in 
clusters. The clustering with FM dd +  as distance matrix, 
on the other hand, yields monotonically increasing E(K). 
Therefore as K increases the distribution of functions in 
clusters improves. Similarly, the performance of the 
DIANA clustering with the proposed distance matrix is 
superior to distances computed only with gene expressions 
(Fig. 2) for K > 1. 
 
The average proportion of functions in clusters was also 
computed for the SAGE data set. The resulting E(K) for 
several number of clusters produced with UPGMA and 
DIANA are presented in Figs. 3 and 4. The biologically 
motivated distance matrix FM dd +  provides larger E(K), 
for K > 2, for clusters constructed with UPGMA (Fig. 3) 
and DIANA (Fig.4) than the gene expression-based 
distances Md . Therefore inclusion of prior functional 
information improves the distribution of functions in 
clusters. 
 
Discussion: 
Although somewhat limited in nature, our studies make 
astrong case for using semi-supervised clustering 
whenever possible - one that merges existing biological 
knowledge with experimental data in grouping genes. A 
penultimate stage of this approach is available in. [9] The 
present approach has at least two distinct advantages 
over previous approaches [1, 9]: it offers a one step 
algorithm that determines the appropriate modifications 
for various categories of genes in an automatic and data 
based fashion. In addition, since it just modifies the 
distance (or dissimilarity) matrix, it can be used in 
conjunction with any dissimilarity based clustering 
techniques. Furthermore, unlike the approaches 
presented in [1] and [9], we provide analytical as well as 
computationally inexpensive procedure for parameters 
selection. 
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Figure 1: Average proportion of functions in clusters computed for the yeast data clustered with the UPGMA method 
with (triangles) and without (circles) functional information 
 

 
Figure 2: Average proportion of functions in clusters computed for the yeast data clustered with DIANA with 
(triangles) and without (circles) functional information 
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Figure 3: Average proportion of functions in clusters computed for the SAGE data clustered with UPGMA with (triangles) 
and without (circles) functional information 
 

 
Figure 4: Average proportion of functions in clusters computed for the SAGE data clustered with DIANA with (triangles) 
and without (circles) functional information 
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