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Abstract:  
In microarray experiments many undesirable systematic variations are commonly observed. Often investigators analyzing 
microarray data need to make subjective decisions about the quality of the experiment, by examining its chip image and a 
simple scatter plot. Thus, a more rigorous but simple method is desirable to determine the quality of microarray data. We 
propose two exploratory methods to investigate the quality of microarray experiments with replicated chips. The first method 
is based on correlations among chips and the second on the actual intensity values for each gene. The proposed methods are 
illustrated using a real microarray data set. The methods provide an initial estimation for determining the quality of microarray 
experiments. 
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Background: 
In microarray experiments different sources of systematic 
and random errors can arise, which may significantly affect 
the inference on the measured gene expression patterns. A 
normalization procedure is regularly employed to remove 
(or minimize) the artifacts due to such errors. While these 
normalization approaches are useful for adjusting bias of 
each individual chip, they do not provide a rigorous 
statistical criterion to detect chips in poor quality. At an 
earlier stage of analysis, each microarray slide is often 
examined graphically using the scatter plot between chips 
to examine large variability (or low reproducibility) and 
any unusual patterns. However, such examinations are 
based on subjective human pattern recognition, and chips in 
poor quality can frequently enter the subsequent analysis, 
resulting in unreliable inference on the whole microarray 
study. Therefore, in this study we are concerned about 
checking the quality of overall microarray experiments and 
to identify the outlying chips that have much lower 
reproducibility than other chips. 
 
There have been several approaches for checking 
reproducibility in microarray experiments. For example, 
Parmigiani et al., [1] defined integrative correlation 
between two experiments that are conducted separately to 
answer the same biological question. This integrative 
correlation is calculated for each gene and called a gene’s 
reproducibility score. King et al., [2] used correlations, the 
rate of two fold changes, and principal component analysis 
to check the reproducibility of gene expression 
measurements. Park et al., [3] proposed a diagnostic plots 
for identifying outlying slides. In this paper, we propose an 
exploratory method to check the quality of microarray data 
using two different approaches. 
 
Methodology: 
We first describe the approach based on the correlations 
between chips and then describe the other approach based 
on the actual intensity values. 

Correlation Based Approach 
Let ijgY be the normalized log intensity of the jth replicates of 

the ith treatment for gene g, where i=1, 2, · · · , I, j = 1, 2, · · · , 
ni, and g = 1, 2, · · · ,G. For the ith treatment and the jth chip, 
denote the correlation coefficients and correlation matrices as 
follows: 
 

},,{ , jlrR ilij
w
ij ≠∀=  

},,...,1,{ , kklij
b
ij nlandikrR =≠∀=           

},,{ , ljthatsuchlandjrR ilij
w
i >∀=  

},,...,1,,...,1,,{ , kiklij
b
i nlandnjikrR ==≠∀=

 
Where ),(, klijklij YYcorrr =  and 

T
ijGijijij YYYY ],....,,[ 21= . w

ijR represents the within-

group correlations of the jth chip in the ith treatment with the 

other chips in the treatment i, b
ijR and does the between group 

correlations of the jth chip in the treatment i with the other 

chips from the different treatments. w
iR  and b

iR  represent 
the collections of all within-group correlations and between 
group correlations for the ith treatment, respectively. Using 
these correlation measures, we can check reproducibility.  
 

Let 
w
ijr  be the average of all components of w

ijR  and 
b
ijr  be 

the average of all components of b
ijR . If the chips are 

homogeneous within the same treatment, then w
ijR would be 
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close to 1. Thus, the specificity can be defined in terms of 
w

r.  and the sensitivity in terms of 
w

r. −
b

r. , where 
w

r. · 

and 
b

r.  are the overall averages of w
ijR  and b

ijR over i(= 1, · 

· · , I) and j(= 1, · · · , in ), that is, they represent the overall 
means of the within and between correlations, respectively. 
 
Chip-wise correlation plot 
For the ith treatment with in  chips available, there are 

in ( in -1) / 2 correlation coefficients available. The chip-
wise correlation plots show the distribution of these 
correlations for each chip. The x−axis represents chips and 
the y-axis represents the distribution of pairwise within 
correlation coefficients. If a certain chip has a low 
reproducibility, then it is expected to show a different 
pattern of correlation coefficient. 
 
Summary correlation plot 
For each chip, there are two summary correlation 

coefficients available: (
w
ijr , 

b
ijr  ). We propose a summary 

correlation plot using these measures. The x−axis 

represents 1− 
w
ijr  and the y-axis represents 1−

b
ijr . Then, 

each chip can be represented as a point in this plot. If there 
is an outlying chip, then its point will be located farther 
from the origin than other treatments. The closer to the 
origin, the more reproducible is. 
 
Kolmogorov-Smirnov test 
To check whether the experiment is reproducible within the 
same treatment, we compare the distributions of 

correlations, w
iR for i = 1, · · · , I. After z-transformation (z 

= log ((1+r) / (1−r)), we apply the one-sided Kolmogorov-

Smirnov test (K-S test) for all pairs of ( w
iR , w

iR '  ) for i ≠ 
i’. The alternative hypothesis of this test is that the 
distribution of correlation coefficients derived from the ith 
treatment is greater than that of the the i’th treatment. The 
alternative hypothesis is that the distribution function of 

w
iR  is less than the distribution function of w

iR ' , that is, 

the distribution of w
iR  is in the right side of the 

distribution of w
iR ' . If the p-value is small, the distribution 

of Rwi is significantly different from w
iR ' , that is, the 

reproducibility differs between two treatments and 
moreover the i’th treatment is less reproducible than the ith 
treatment. For the summary of K-S test, we provide I × I 
matrix }{ ijKS pP =     of p-values, where ijp  is the p-

value of the K-S test, where the alternative hypothesis is 
that the distribution of correlation coefficients derived from 
the ith treatment is greater than that of the jth treatment. 
Since the p-values of the K-S tests are from the one-sided 
tests, ijij pp ≠  for all i ≠ j. 

 
Mean test 
Alternatively, we can compare the means of two sets of 
correlations. If the experiment is highly reproducible, the 

means of w
iR and w

iR '  would be close to each other. To 
test the differences among I sets of correlations, we use 
Wilcoxon rank sum test for all pairs of two groups. If the p-

value is small, the mean of w
iR is significantly different 

from the mean of w
iR ' . For the summary of mean test, we 

provide I × I matrix   }{ *
ijW pP =     of p-values, where 

*
ijp  is the p-value of the Wilcoxon rank sum test, where 

the null hypothesis is that the mean of correlation 
coefficients derived from the ith treatment is less than that 
of the jth treatment. Since the p-values of the Wilcoxon 

rank sum tests are also from the one-sided tests, *
ijp ≠ *

jip  

for all i ≠ j. 
 
Intensity Based Approach 
The correlation based approach checks the treatment-wise 
and the chip-wise qualities. Therefore, it is not suitable for 
making any decisions concerning specific genes. In this 
section, we propose an alternative method to check the 
gene-wise quality by using the actual intensity values for 
each gene. 
 
For a specific gene g, we develop test procedures for 
checking its reproducibility. If the ith treatment group is 
highly reproducible, the intensity values from the same 
gene in this group should be similar. For simplicity, we 
assume that ijgY  has the mean ijgμ  with the common 

variance 2
igσ . 

 
To check the quality of gene g, we test whether the mean of 
intensities within a treatment are the same or not. The 
hypothesis of interest is as follows:  
 

.2lg0 ...: gingii i
H μμμ ===   

 
For testing this hypothesis, the analysis of variance 
(ANOVA) model is commonly used. [4] In our case, 
however, there is no replicate data available to calculate the 
within sums of squares. Thus, a traditional ANOVA model 
is not applicable. Instead, we use the Local-Pooled-Error 
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approach (LPE, [5]) to estimate 2
igσ . The LPE is based on 

the idea that genes with similar intensity values will have 
similar variabilities within the same treatment. In each 
treatment, all genes with similar intensities are pooled 
together to estimate variances. 
 
We apply the following two step procedure for each gene. 

Step 1: Estimate 2
igσ , using LPE. 

Step 2: Use the following statistic:  
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2
,giX  looks like an F-test statistic, but it approximately 

follows the 2x  distribution with the degrees of freedom 

under the assumption that ijgY are normally distributed and 
2
igσ  are known. If 2

,giX is sufficiently large, we can 

conclude that gene g does not have a high specificity in 
treatment i. That means there are some chips in which gene 
g has quite different intensity values in the ith treatment. In 
that case, gene g is called discordant. Otherwise, gene g is 
called concordant. 
 
Since we test G genes simultaneously, we may need to 
consider multiple testing issues. In our procedure, we 
control the false discovery rate (FDR, [6, 7]) using q-
values. With the predetermined cutoff value, we decide 
whether gene g is concordant or not. 
 
After deciding whether each gene is concordant or 
discordant, we calculate the gamma value as a summary 
measure of concordance 
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where cΠ is the probability of concordance and dΠ  the 

probability of discordance. Here, cn  is the number of 

concordant genes and dn is the number of discordant 

genes. In most cases, cn  + dn is the total number of 
genes. The gamma values can be computed for each 
treatment group .,...,1, ⎟

⎠
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⎜
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Example 
In this section, the proposed methods are applied to murine 
B-cell data. To study gene expression profiles in murine B-
cell development, total cellular RNA was extracted from 
five consecutive B-lymphocyte lineage sub-populations 
(pre-BI cells, large pre-BII cells, small pre-BII cells, 
immature B-cells, and mature B-cells), and then, gene 
expression profiles from the five consecutive stages of 
mouse B cell development were generated with more than 
five replicates. [8] 
 
Murine B-cell data show lower sensitivity (0.66) and 
specificity (0.02). For the further exploratory analysis, we 
apply the proposed methods. In the chip-wise correlation 
plot (Figure 1), most treatments except small Pre-BII cells 
(chip 23 - chip 27) show high chip-wise correlations. Chip-
wise correlations of the small Pre-BII cell treatment have a 
highly skewed distribution and the third replicate has very 
small correlations compared to the other chips in the same 
group. Therefore, we can conclude that this third replicate 
is problematic and has to be checked or treated before a 
further analysis. In the summary correlation plot (Figure 2), 
Murine B-cell data shows outliers, chip 25. All the chips 
except chips in Small Pre-BII group are located in the 
upper triangular and chip 25 is far from the other chips. It 
supports the result from chip-wise correlation plot (Figure 
1). 
 
In Table 1, the last column of PKS and PW show lower p-
values than the others. Therefore, we can conclude that the 
distribution of within correlation in Small Pre-BII group is 
greater than the distribution of the other groups. Also the 
mean of within correlation in small Pre BII group is less 
than the mean of the other groups. 
 
Next, we apply the test based on intensities within 
treatment. We assume the FDR as 5%. Table 2 shows the 
result of the intensity based tests. Murine B-cell data show 
quite different patterns. Especially, the gamma of small 
Pre-BII treatment is lowest among five treatments. 
Therefore we can conclude that Murine B-cell data set is 
less reproducible. 
 
We can conclude that murine B-cell data show lower 
reproducibility, sensitivity and specificity. Therefore, it is 
not clear whether or not a further statistical test procedure 
can detect true differences successfully among the five 
consecutive stages, especially with small pre-BII cells. It is 
mainly due to one outlying chip (chip 25), as shown in 
Figure 3. Therefore, the analyst should check the 
experimental procedure and tissues used for this chip 
before a further statistical analysis. 
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Figure 1: Chip-wise correlation plot: Murine B-cell data. The plots are for the five treatments: Immature B (1, 2, 3, 4, 
5), Large Pre-BII (6, 7, 8, 9, 10), Mature B (11, 12, 13, 14, 15, 16), Pre-BI (17, 18, 19, 20, 21, 22), and Small Pre-BII 
(23, 24, 25, 26, 27) 
 

 
Figure 2: The summary correlation plot. The solid line across the plot is the reference line for specificity. The chips 
lower than this line represent low specificity and the chips upper than this line represent high specificity 
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Figure 3: The scatter plot matrix of five replicates for Small Pre BII treatment in Murine B-cell data 
 

PKS Imm. B Large BII Mat. B Pre BI Small BII 
Immature B 1.00 0.41 0.34 0.52 0.20 
Large Pre BII 0.90 1.00 0.62 0.62 0.20 
Mature B 0.89 0.81 1.00 0.77 0.15 
Pre BI 0.89 0.81 0.94 1.00 0.15 
Small Pre BII 1.00 0.90 0.89 0.72 1.00 

PW Imm. B Large BII Mat. B Pre BI Small BII 
Immature B 1.00 0.37 0.30 0.34 0.11 
Large Pre BII 0.66 1.00 0.45 0.42 0.24 
Mature B 0.72 0.58 1.00 0.47 0.17 
Pre BI 0.68 0.60 0.55 1.00 0.18 
Small Pre BII 0.90 0.78 0.84 0.83 1.00 
Table 1: PKS and PW matrices of Murine B-cell data 
 

Treatment Conc/disc Γ 
Murine B-cell (27) 
Immature B(5) 1086/5509 0.6707 
Large Pre BII (5) 1079/5516 0.6728 
Mature B(6) 1145/5450 0.6528 
Pre BI (6) 1095/5500 0.6679 
Small Pre BII (5) 1320/5275 0.5997 
Table 2: Summary table for the within test based on intensities 
 
Discussion: 
At the initial stage of the microarray data analysis, the 
exploratory data analysis (EDA) provides the first contact 
with data. The techniques of EDA consist of a number of 

informal steps such as checking the quality of the data, 
calculating simple summary statistics, and constructing 
appropriate graphs. 
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The proposed method is a more formal way of checking 
quality than simple EDA plots. Thus, at an initial stage of 
the microarray data analysis, the proposed method provides 
useful information regarding the quality of microarray 
experiments. The correlation based approaches check the 
treatment-wise quality, while the test based on the actual 
intensity values checks the gene-wise quality for each gene. 
 
The proposed method is quite effective in detecting some 
outlying chips. It is much easier to apply than a traditional 
method of checking outlying chips either by the principal 
component analysis or the quality control plot. [3] 
 
There are some statistical issues to be taken into 
consideration, however. First, the log intensities may not 
have an approximate normal distribution. For simplicity, 
we have assumed the normal distribution for testing all 
hypotheses. However extensions to other distributional 
assumptions are certainly possible. For example, the other 
distributions such as log-normal and gamma distributions 
can be easily handled. Second, we did not use a stringent 
criterion for identifying the concordant/discordant genes. 
All these genes should be checked by using a analysis such 
as SAM [9] or t-test [10] during a later stage of analysis. 
Third, the correlation coefficients derived from all possible 
pairs of chips may not be independent. We did not consider 
these correlations in the current analysis. A more 
sophisticated approach based on the bootstrapping method 
is under development which considers possible correlations 
among the correlation coefficients. 
 
We would like to emphasize that the proposed method is an 
exploratory analysis. We believe the proposed method to be 
practically useful, simple and easy to implement that will 
provide a more rigorous approach in a preliminary 
overview regarding the quality of microarray experiments. 

Most proposed methods are implemented in the software 
arrayQCplot [11] and can be downloaded from 
Bioconductor(www.bioconductor.org). 
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