
Bioinformation by Biomedical Informatics Publishing Group                   open access 
www.bioinformation.net                                         Hypothesis  
________________________________________________________________________ 

ISSN 0973-2063   
Bioinformation 2(4): 145-152 (2007)  

Bioinformation, an open access forum 
© 2007 Biomedical Informatics Publishing Group 

145

 

Comparative sequence analysis of acid 
sensitive/resistance proteins in 

Escherichia coli and Shigella flexneri 
 

 
Selvaraj Manikandan1, $, Seetharaaman Balaji 2, $, Anil Kumar1 and Rita Kumar1, * 

 
1 Institute of Genomics and Integrative Biology, Mall Road, Delhi - 110007, India; 2 Department of Biotechnology, Manipal Institute 

of Technology, Manipal University, Manipal - 576104, India; $ Both the authors contributed equally 
Rita Kumar* - E-mail: rita@igib.res.in; Phone: 91 11 27662133; Fax: 91 11 27667471; * Corresponding author 

 
received September 17, 2007; revised October 25, 2007; accepted November 22, 2007; published online December 11, 2007 

 
Abstract: 
The molecular basis for the survival of bacteria under extreme conditions in which growth is inhibited is a question of great 
current interest. A preliminary study was carried out to determine residue pattern conservation among   the antiporters of enteric 
bacteria, responsible for extreme acid sensitivity especially in Escherichia coli and Shigella flexneri. Here we found the 
molecular evidence that proved the relationship between E.coli and S.flexneri. Multiple sequence alignment of the gadC coded 
acid sensitive antiporter showed many conserved residue patterns at regular intervals at the N-terminal region. It was observed 
that as the alignment approaches towards the C-terminal, the number of conserved residues decreases, indicating that the N-
terminal region of this protein has much active role when compared to the carboxyl terminal. The motif, FHLVFFLLLGG, is 
well conserved within the entire gadC coded protein at the amino terminal. The motif is also partially conserved among other 
antiporters (which are not coded by gadC) but involved in acid sensitive/resistance mechanism. Phylogenetic cluster analysis 
proves the relationship of Escherichia coli and Shigella flexneri. The gadC coded proteins are converged as a clade and diverged 
from other antiporters belongs to the amino acid-polyamine-organocation (APC) superfamily.  
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Background: 
Microbes are not always boned to have the favorable 
condition for their survival. So as to tackle the unfavorable 
conditions, they adopt certain mechanisms to overcome it. All 
enteric pathogens are required to bypass the acidic 
environment of stomach before infecting the intestinal 
mucosa, where luminal pH approaches neutrality. [1] Enteric 
micro-organisms have developed several inducible 
mechanisms for surviving transient periods of extreme acid 
stress. [2] Though such acid resistance mechanism is found in 
Enterobacteriaceae family but it is not the characteristic 
feature of all microbes of the family. Escherichia coli and 
Shigella flexneri have been reported to possess the acid 
resistance mechanism [3] where gadA and gadB genes code 
for the isoforms of glutamate decarboxylase (GAD). The gad 
system is based on the coordinated action of these two 
homologues of glutamate decarboxylase and of a specific 
glutamate/gamma-aminobutyrate antiporter (GadC) [4], in 
which glutamate is internalized and converted to γ-
aminobutyrate (consuming an intracellular proton) that is 
subsequently exchanged for another extracellular glutamate 
via a membrane-located antiporter. [5] Gale and Epps [6] as 
well as others [7, 8] demonstrated that there are a variety of 
decarboxylases that respond to low pH. The putative 
glutamate/GABA antiporter which is encoded by the gadC 
gene is responsible for importing the glutamate inside the cell 

and simultaneously exporting the GABA to the acidic 
environment. This helps for neutralization and survival in 
the acidic environment. The acid sensitivity inner 
membrane antiporter protein plays a pivotal role in the acid 
resistance indirectly, it is also found that mutation in the 
inner membrane antiporter protein makes the organism acid 
sensitive as neither intake of glutamate nor export of 
GABA takes place, which pave an acidic environment 
where the microbes will undergo death phase. This specific 
GABA antiporter belongs to the amino acid -polyamine-
organocation (APC) super family. Gad A, B, C, hde AB, all 
are essential for the expression of acid resistance strains 
and mutations in any of these regions may block glu-
dependent systems. [9] These genes encode a glutamate-
dependent acid resistance mechanism that is optimally 
active under conditions in which it is needed to maintain 
viability. [10]  
 
Present study deals with gadC encoded inner membrane 
antiporter due to its importance in transporting glutamate 
across inner membrane through gadC and making 
favourable environment for surviving in extreme condition. 
[9] Here we tried to decipher, is there any evidence hidden 
in the antiporter protein, of Escherichia coli K-12, 
O157:H7 and Shigella flexneri? Because this mechanism 
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was not found in any other Enterobacteriaceae. We   suspect 
that there must be some sequence conservation which was not 
detected in other enterobacteriaceae. GadC of Listeria 
monocytogenes has a motif FHLVFFLLLGG that corresponds 
to the Shigella flexneri GadC FSLVFFLLLGG and is 
considered to play an important role in the recognition of the 
glutamate. [5] Here we also address this pattern in the rest of 
the gadC coded acid sensitive/resistance proteins and other 
antiporters of APC super family as well.  

 
Methodology: 
The key word ‘gamma aminobutyrate antiporter’ yielded 290 
hits of protein sequences from GenBank [URL 
http://www.ncbi.nlm.nih.gov/Genbank/]; Synonyms to gadC-
XasA coded antiporter proteins were also retrieved. [11] From 
the 290 hits, gadC coding proteins were selectively chosen; 
besides, a few amino acid antiporters and arginine/ornithine 
antiporters were also included for analysis (Table 1 under 
supplementary material). The other antiporters such as, 
putrescine-ornithine antiporters, lysine:cadaverine antiporters, 
histidine/histamine antiporters were omitted from our analysis 
data.  
 
A multiple sequence alignment was done by using Clustal X 
Ver.1.83 [12], the gap opening was set at 10.00, the gap 
extension at 0.20 with 30% delay divergent sequences and 
Gonnet series weight matrix was used. From the multiple 
sequence alignment, the guide tree was derived. To justify the 
confidence of the clades, re-sampling method (bootstrap) was 
used with 10000 trails. Web logo (ver 2.8.2) was used to 
identify the conserved pattern in the gadC coded antiporters 
of Enterobacteriaceae. Alignments were analysed and 
phylogenetic relationships among the sequences were 
established using different procedures: Neighbour-Joining 
(NJ) [13], Fast Minimum Evolution (FastME) [14] 
Unweighted Pair Group Method with Arithmetic Mean 
(UPGMA). [15] The final tree was displayed by using MEGA 
3.1 [16], the nodes and clades of gadC antiporters were traced 
out by visual examination. 
 
Results and discussion: 
Tracing the gadC cluster among the antiporters 
A preliminary multiple sequence alignment was carried out 
among all antiporters of enteric bacteria belonging to the APC 
superfamily. Based on the multiple sequence alignment and 
tree construction with 10000 bootstrap trials Figure 1 shows 
that the gadC coded proteins form a separate cluster from 
other antiporters which belong to APC super family.  
 
The similar trend was also observed in phylogenies obtained 
by using different methods (NJ, UPGMA and FastME). The 
antiporter sequence of Rhodopirellula baltica (NP_864077) 
which belongs to proteobacter was used as an out-group. The 
convergence of gadC coded antiporters stands separately from 
other antiporters which comprises of Listeria monocytogenes, 
Clostridium perfringens, Lactococcus lactis E. coli, S. flexneri 
and S. dysenteriae.  
 
 

Evolutionary distance between antiporters 
From Figure 2, it is clear that ten major proteins coded by 
gadC forms the root of the tree (0.0) which corresponds to the 
gadC cluster (shown in Figure 1). The out group used showed 
maximum deviation (0.90) and 100% confident divergence 
from other antiporters from other operational taxonomical 
units (OTUs). The root comprises antiporters from S. flexeneri 
M25-8A, S. flexeneri, E.coli 06, E. coli UT189, E. coli 
CFT073, E. coli K-12, E. coli K-12: W3110 and E. coli 
0157:H7. This proves the very close relationship of E. coli 
and S. flexneri. Whereas the S. dysenteriae Serovar 1 was 
little diverged (0.01) form the root and shows the close 
relationship with the root.  
 
A slightly deviated cluster from the root (0.43-0.47) which 
corresponds to the gadC cluster shown in Figure 1 comprises 
of Listeria monocytogenes EGD5, L. monocytogenes LO28 
(0.44), Clostridium perfringens str.13 (0.43), Lactococcus 
lactis subsp. Cremoris, L. lactis subsp. cremoris MG1363, L. 
lactis subsp. Lactis str. IL1403 (0.47) shows a close 
relationship among each other. This is congruent with Sanders 
et al (1998), showed that Lactococcus lactis gadC is 
homologous to putative glutamate-gamma-aminobutyrate 
antiporters of E. coli and S .flexneri [10] and also with Cotter 
et al (2001), showed that L. monocytogenes GadC shares high 
homology, 65% and 51% identity (77% and 68% similarity) 
with the equivalent transporters in the L. lactis and E. coli. [5] 
 
The root (0.0) and the closely related cluster (0.43-0.47) have 
the conserved LVFFLLLGCC motif. The conservation goes 
on decreases with respect to other clusters or distantly related 
antiporters and reveals that electrochemical-potential-driven 
transporters essential for the expression of acid resistance, 
could not be detected in other family members of the 
Enterobacteriaceae. [17] 
 
In contrast to neutralophilic bacteria such as Salmonella 
typhimurium, E. coli and Shigella have acid resistance 
systems which are unique. [2] Moreover the acid resistance in 
E.coli and Shigella species is similarly regulated. [18] Hence 
our main focus lies on gadC; the gadC clade was analyzed 
separately so as to determine the relationship between E. coli 
and S. flexneri because studies conducted by Lin et al. [3] 
showed that the toxic strain of E.coli, H10407 did adapt well 
at pH 4.3, although not quite as well as S. typhimurium UK1. 
It was also considered possible that two other strains of E. coli 
and S. flexneri might respond better to an acid shock at a less 
acidic pH. Therefore a separate sequence analysis was carried 
out between E. coli strains and S. flexneri. Careful analysis of 
multiple sequence alignment of E. coli [P63235], E. coli 
0157:H7 [P58229], E. coliO6 [Q8FHG6], showed that these 
organisms have 98-99% homology with their closely related 
clades of phylogeny (Figure 3). This high similarity may be 
due to the two glutamate decarboxylases, encoded by gadA 
and gadB, with gadB forming part of an operon with the 
antiporter determinant gadC. These homologues obviously 
resulted from a gene duplication event, given that they share 
98% and 99% similarity at the DNA and protein levels 
respectively [19] as shown in Figure 3. 
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Figure 1: The phylogenetic tree with 10000 bootstrap trials shows a separate cluster of gadC coded proteins among other 
antiporters belong to amino-acid-polyamine-organocation (APC) superfamily. The similar trend was also observed by using 
different methods (NJ, UPGMA, and FastME). Each branch shows the organism name followed by sub-species and strain. 
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Figure 2: Phylogram shows the branch lengths / evolutionary distances among antiporters. 
 

 
Figure 3: Relationship between the E.coli and its strains with S.flexneri.  The dual mutations one at 4 th residue and the other at 
470th amino acid are represented as blocks. The descendants of E.coli strains such as E.colib0157:H7 and E.coliO6 might have 
deviated at a particular evolutionary time period because of the dual mutation occurred in the sequence (indicated as blocks).  
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Figure 4: Web logo (ver 2.8.2) was used to identify the consensus region of the N-terminal among the gadC coded proteins 
which is shown in box. 
 

 
Figure 5: Web logo (ver 2.8.2) was used to identify the consensus region of the N-terminal among the antiporter proteins not 
coded by gadC which is shown in box. 
 
Distinct pattern conservation of glutamate binding 
region 
Multiple alignment of the gadC coded acid sensitive 
antiporter showed many conserved residue patterns in a 
regular interval at the N-terminal region and as the 
alignment approached the C-terminal end, the number of 
conserved residues decreased, indicating that the N-
terminal region of this protein has a much active role when 
compared to the carboxyl terminal end. The motif 
FSLVFFLLLGG is considered to play an important role in 
the recognition of the glutamate and our alignment analysis 
(Figure 4) confirmed that the motif FHLVFFLLLGG was 
well conserved within the entire gadC coded proteins (at 
the amino terminal). It proved that the FHLVFFLLLGG 
motif is not only unique for Shigella flexineri but also for 
the other gadC coded bacteria such as Escherichia coli, E. 
coli O157:H7, E. coli O6, Shigella sonnei Ss046, 
Lactococcus lactis subsp. lactis, Lactococcus lactis subsp. 
cremoris and Listeria monocytogenes.  
 
We also extended our analysis to address the pattern 
conservation among the other antiporters (which are not 
coded by gadC) involved in acid sensitive/resistance 
mechanism.  Amazingly we found that the pattern is still 
partially conserved for the acid sensitive/ resistance 
mechanism (Figure 5). This pattern conservation also 
depicts that the function is highly dependant on the pattern 
used for the acid resistance. The motif ‘FHLVFFLLLGG’ 
was well conserved with the entire gadC coded proteins at 

the amino terminal where the binding residue could be 
found with in the first and second transmembrane helices. 
[5] The partial conservation of this motif among the other 
antiporters (not coded by gadC) is due to the poor acid 
resistance. The strong motif conservation could be the 
reason for the extreme acid resistance of E. coli and S. 
flexneri. Our pattern analysis shows the relationship of 
Escherichia coli and Shigella flexneri. This can be 
correlated with the claims of Waterman and Small (2003) 
[19], for a strong-link between the possession of the gadC 
genes and the expression of stationary-phase acid 
resistance. This also correlates with the epidemiological 
data that associated these species with having a lower 
infective dose compared to other enteric pathogens and 
confirms the close evolutionary relationship between 
Escherichia coli and Shigella flexneri amongst the 
Enterobacteriaceae. 
 
The overall analyses presented herein clearly confirm and 
adds support to the claim that Shigella species possess acid 
resistance because they are essentially E. coli [20] in 
agreement with the taxonomic criteria indicate that Shigella 
and Escherichia are actually the same genus [21] and have 
identical virulence determinants that cause clinically 
indistinguishable disease. [22, 23] The phylogenetic 
analysis of gadC cluster is in congruent with the high 
degree of identity between the coding regions of rpoS in S. 
flexneri and E. coli confirms the close taxonomic 
relationship between the species. [24] This close 
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connection (observed from the acid resistance) may lead to 
the construction of acid resistant vaccine strains which 
would be effective at low dosages and would not require 
encapsulation or administration of bicarbonate to ensure 
passage through the stomach. 
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Supplementary material 
 
Sl 
No 

Primary 
accession 
number 

Organism Sub-species Strain oProtein 
length 
(amino acids) 

oMolecular 
weight (Da) 

1 YP_210202 Bacteroides fragilis  ATCC 25285; 
NCTC 9343 

532 aa 57130 

2 CAJ50406 Bordetella avium  197N 491 aa 53194 
3 YP_223596 Brucella abortus biovar 1 9-941 510 aa 55080 
4 NP_541887 Brucella melitensis  16M 510 aa 55150 
5 NP_829364 Chlamydophila 

caviae 
 isolate="GPIC" 466 aa 51138 

 
6 NP_296865 Chlamydia 

muridarum Nigg 
 MoPn 466 aa 50981 

 
7 NP_224487 Chlamydophila 

pneumoniae 
 CWL029 468 aa 51508 

 
8 NP_445023 Chlamydophila 

pneumoniae 
 AR39 468 aa 51508 

 
9 NP_562976 Clostridium 

perfringens 
 13 472 aa 50926 

 
10 AAO91508 Coxiella burnetii  RSA 493 476 aa 52577 
11 NP_820994 Coxiella burnetii  RSA 493 476 aa 52446 
12 ZP_01587708 Enterobacter sp.  638 460 aa 47394 
13 AAM46084 Enterococcus 

faecalis 
  454 aa 49565 

 
14 NP_753817 Escherichia coli  CFT073 511 aa 54976 
15 NP_416009 Escherichia coli  K-12 511 aa 54946 

 
16 AP_002115 Escherichia coli  K-12, 

sub strain 
W3110 

511 aa 54946 
 

17 YP_859796 Escherichia coli Serovar 
O1:K1 

APEC O1 489 aa 53280 
 

18 P58229 Escherichia coli  O157:H7 511 aa 55103 
19 Q8FHG6 Escherichia coli  O6 511 aa 55107 
20 ABE07184 Escherichia coli  UTI89 511 aa 55091 
21 NP_753817 Escherichia coli  CFT073 511 aa 54976 
22 CAG45113 Francisella 

tularensis 
tularensis SCHU S4 469 aa 51642 

23 YP_513914 Francisella 
tularensis 

holarctica LVS 473 aa 52696 
 

24 YP_666650 Francisella 
tularensis 

tularensis FSC 198 469 aa 51511 
 

25 YP_169518 Francisella 
tularensis 

tularensis Schu 4 469 aa 51511 
 

26 YP_169957 Francisella 
tularensis 

subsp. 
tularensis 

Schu 4 471 aa 52479 
 

27 CAF33981 Lactococcus lactis  IPLA 655 464 aa 50641 
28 O30417 Lactococcus lactis Cremoris  503 aa 55369 
29 AAC46187 Lactococcus lactis cremoris MG1363 503 aa 55369 
30 NP_562216 Clostridium 

perfringens 
 13 485 aa 52630 

 
31 NP_267447 Lactococcus lactis lactis IL1403 503 aa 55434 
32 YP_095718 Legionella 

pneumophila 
pneumophila Philadelphia 1 464 aa 50647 

 
33 YP_095685 Legionella 

pneumophila 
pneumophila Philadelphia 1 445 aa 49056 

 
34 YP_094448 Legionella 

pneumophila 
pneumophila 
 

Philadelphia 1 467 aa 50332 
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35 AAK17186 Listeria 
monocytogenes 

 EGD5 507 aa 55169 

36 AAG22561 Listeria 
monocytogenes 

 LO28 507 aa 55154 

37 ZP_01642072 Pseudomonas putida  W619 475 aa 47649 
38 CAD07591 Salmonella enterica Sub sp. 

enterica 
Serovar 
Typhi 

CT18 473 aa 51854 

39 YP_403230 Shigella dysenteriae Serotype 1 Sd197 511 aa 54984 
40 AAD14843 Shigella flexneri  M25-8A 511 aa 55077 
41 P63236 Shigella flexneri   511 aa 55077 
42 P0AAE7 Shigella flexneri   460 aa   49501 
43 YP_310489 Shigella sonnei  Ss046 460 aa 49370 
44 CAG41690 Staphylococcus 

aureus 
aureus 
 

MRSA252 478 aa 51918 

45 NP_720726 Streptococcus 
mutans 

 UA159 452 aa 49472 
 

46 NP_078056 Ureaplasma parvum serovar 3 ATCC 700970 759 aa 84583 
47 NP_993425 Yersinia pestis Biovar  

Microtus 
91001 463 aa 49740 

 
48 NP_405843 Yersinia pestis Biovar 

Orientalis 
CO92 463 aa 49740 

 
49 YP_647695 Yersinia pestis  Nepal516 463 aa 47684 
50 YP_070743 Yersinia 

pseudotuberculosis 
 IP32953 463 aa 46696 

 
Table 1: Acid sensitivity/resistance antiporter protein sequences retrieved from GenBank.  

 
 
 

 


