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Abstract: 
The prediction of RNA secondary structure can be facilitated by incorporating with comparative analysis of homologous 
sequences. However, most of existing comparative methods are vulnerable to alignment errors and thus are of low accuracy 
in practical application. Here we improve the prediction of RNA secondary structure by detecting and assessing conserved 
stems shared by all sequences in the alignment. Our method can be summarized by: 1) we detect possible stems in single 
RNA sequence using the so-called position matrix with which some possibly paired positions can be uncovered; 2) we 
detect conserved stems across multiple RNA sequences by multiplying the position matrices; 3) we assess the conserved 
stems using the Signal-to-Noise; 4) we compute the optimized secondary structure by incorporating the so-called reliable 
conserved stems with predictions by RNAalifold program. We tested our method on data sets of RNA alignments with 
known secondary structures. The accuracy, measured as sensitivity and specificity, of our method is greater than predictions 
by RNAalifold.  
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Background: 
In recent years, RNAs gained increasing interest since a 
huge variety of functions associated with them were found 
[1]. It is now understood that RNA serves many cellular 
roles beyond being just a passive carrier of genetic 
information [2, 3]. The function of an RNA molecule is 
principally determined by its (secondary) structure. 
Unfortunately, the current physical methods available for 
structure determination are time-consuming and expensive 
[4]. For this reason, computational prediction provides an 
attractive alternative to facilitate the discovery of RNA 
secondary structure.   
 
Minimum Free Energy (MFE) methods [5] and 
comparative sequences methods have been used to predict 
RNA secondary structure. However, there are several 
independent reasons why the accuracy of MFE structure 
prediction is limited in practice [6]. Generally, the best 
accuracy can be achieved by comparative methods [7], in 
which a large number of sequences are aligned to reveal the 
common base pairing pattern. So far, a number of methods 
based on comparative analysis of homologous sequences 
have been implemented to predict RNA secondary structure 
[8-12]. However, these approaches depend on fixed 
alignments and thus are very vulnerable to alignment 
errors. Several methods for simultaneous sequence 
alignment and structure prediction have been proposed to 

better this problem [13-17]. But algorithms based on these 
methods are too computationally taxing to be practical.  
 
In this paper, we present a stem-based method to improve 
the prediction of RNA secondary structure. The central idea 
of our method is to detect and assess conserved stems 
shared by all sequences in the inputted RNA alignment, and 
then to compute the optimized secondary structure by 
incorporating reliable  conserved stems (defined in Section 
Methods) with predictions by RNAalifold [9]. Our method 
improves RNAalifold by two major means: 1) to add some 
real base pairs which are possibly missed by RNAalifold 
for improving the sensitivity; 2) to remove some artificial 
base pairs which are possibly mistaken by RNAalifold for 
improving the specificity. We tested our method on data 
sets of RNA alignments taken from the Rfam database [18]. 
Experimental results suggest that our method can predict 
RNA secondary structure with much better performance 
than RNAalifold.  
 
Methodology:  
We presented the concept of position matrix for the first 
time in [19]. In this paper, we applied it to predicting RNA 
secondary structure.  
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Detecting possible stems in single sequence using the 
position matrix  
We use the so-called position matrix to uncover some 
possibly paired positions in the sequence. Given an RNA 
sequence of length N, Seq, we build one N×N position 
matrix (denoted by MSeq) by following steps: (1) The 
reverse complement of Seq, Seq', is firstly computed from 
the original sequence according to following rules: (a) The 
complement of ‘G’ is not ‘C’ but the set of {C, U}. For 
simplicity, we denote φ = {C, U}. (b) The complement of 
‘U’ is not ‘A’ but the set of {A, G}. For simplicity, we 
denote ψ = {A, G}. (c) When the character is a gap 
(denoted by ‘_’), the complement for it should be a gap too. 
Here, the gaps in the sequence are possibly introduced by 
the inputted sequence alignment. (2) We build one N×N 
matrix (this is not the position matrix) containing Seq' in 
the first row. The ith (0 ≤ i ≤ N-1) row contains the 
sequence generated from Seq' by shifting i position to the 
left (circular left shift). (3) The position matrix MSeq is 
computed by comparing Seq with the matrix generated by 
(2) row by row. 0 or 1 or -1 is assigned to the i, j (0 ≤ j ≤ N-
1) element of MSeq by comparing the jth character of Seq 
with the i, j (0 ≤ j ≤ N-1) element of the matrix of (2). Here, 
‘0’ means the corresponding position is unpaired and 
ungapped, ‘1’ means the position is paired and ungapped, 
and  ‘-1’ means the position is gapped. The following rules 
should be obeyed when two characters (b and b') are 
compared with each other: (a) If b equals b' and neither of 

them is ‘_’, then 1 is assigned. (b) If b or b' is ‘_’ or both of 
them are ‘_’, then -1 is assigned. (c) If b does not equal to 
b' and neither of them is ‘_’, then 0 is assigned. Here, b is a 
character from Seq and b' is an element from the matrix of 
(2). Specially, when b' is φ or ψ, the word “equal” means 
that b belongs to b'. As shown in Figure 1, One N×N matrix 
(the left) is firstly built from the original sequence. Then 
the position matrix, MSeq, is computed by comparing Seq 
with the left matrix row by row.   
 
We can detect all possible stems in an RNA sequence by 
scanning the position matrix row by row. The key is to find 
all zones of continuous “1” in the matrix. There is a one-to-
one mapping between the stems in the sequence and the 
zones of continuous “1” in the position matrix. As shown in 
Figure 1, two stems in the sequence (Seq) are mapped to 
two zones of continuous “1” in the position matrix (MSeq).  
 
When scanning one row of the position matrix (e.g. the ith 
row of MSeq, 0 ≤ i ≤ N-1), we divide the row into two parts: 
the elements for 0 ≤ j ≤ N-1-i and the elements for N-i ≤ j ≤ 
N-1. Here, j is the column-subscript of the element. As for 
the former, we scan the elements backward from the (N-1-
i)th column. As for the latter, we scan the elements forward 
from the (N-i)th column. Figure 2 is an example for the 
scanning of the position matrix, where MSeq is the position 
matrix shown in Figure 1. Finally, we point that the time 
complexity of the approach mentioned above is O (N2).  

 

 
Figure 1: The construction of the position matrix for a gapped RNA sequence. The stem and its mapping zone are labelled 
by same number  
 
Detecting conserved stems across multiple sequences by 
multiplying the position matrices  
To detect conserved stems across multiple sequences, we 
first introduce the multiplying of position matrices. 
Suppose both M1 and M2 are L×L position matrices. Then 
the resulting matrix (denoted by M) for M1 × M2 is 
computed by equation (1) (see supplementary material). 
 
Specially, the multiplying of the elements must obey 
following rules: (1) 0×0 = 0; 0×1 = 0; 0× (-1) = 0. (2) 1×1 

= 1; 1× (-1) = 1. (3) (-1) × (-1) = -1.  
 
The multiplying of n position matrices is computed by 
equation (2) (see supplementary material). Note that all 
original matrices for multiplying should have the same 
dimension. Obviously, the multiplying of the position 
matrices satisfies the commutative law and the associative 
law. We detect conserved stems shared by all sequences in 
an alignment by following steps: (1) We extract all 
sequences from the alignment and detect all possible stems 
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in each sequence using the approach described in Figure 1 
and Figure 2. (2) We select n different stems from n 
sequences (one stem for one sequence). Here, n is the 
number of sequences in the alignment. (3) We build the 
position matrix for each selected stem using the approach 
described in Figure 1 and multiply these n matrices 
according to the equation (2) (under supplementary 

material). (4) We detect conserved stems by finding zones 
of continuous ‘1’ in the resulting matrix (M) generated by 
(3). There is still a one-to-one mapping between the 
conserved stems and the zones of continuous ‘1’ in M. To 
find the zones of continuous ‘1’, we scanning M using the 
approach described in Figure 2. (5) We repeat the steps (2) 
through (4) until all the stems detected by (1) are selected.  

 

 
Figure 2: As shown in the figure, the seventh row (i = 6) is divided into two parts: the elements for 0 ≤ j ≤ 1 and the 
elements for 2 ≤ j ≤ 7. As for the first part, this row is scanned backward from the second column (i.e. j = 1). As for the 
second part, this row is scanned forward from the third column (i.e. j = 2)  
 
Specially, there are some problems about the step (3) when 
the selected stems have not the same length. In this case, 
for simplicity, we let the longest stem be unchanged and 
just add the gaps into the shorter stems at the beginning and 
the end. Then we build the position matrix for the new 
stems. As shown in Figure 3, we first select three different 
stems from the sequences in (a), and then detect the 
conserved stem (indicated by the rectangles in (b)) by 
scanning the matrix MStem1×MStem2×MStem3.  
 
Actually, the equation (2) (in supplementary material) can 
be directly used to detect conserved stems in the RNA 
alignment. But in the approach mentioned above, we first 
extract all sequences from the RNA alignment and then to 
detect conserved stems shared by all sequences. The benefit 
for this is that some conserved stems possibly missed due 
to alignment errors also can be detected. Finally, we point 
that the time complexity of equation (2) (see supplementary 
material) is O((n-1)L2), where L is the dimension of the 
matrix. Suppose m stems are selected from each sequence 
on the average and the average length of the stem is still L. 
Then the time complexity for detecting conserved stems 
across n sequences of length N is approximately O(mn (n-1) 

L2). In practical application, we keep m be a low constant to 
reduce the time cost. This can be easily done by removing 
some stems which are much shorter than some given 
length. Also, the condition L<<N makes the time and space 
cost be low 
 
Assessing conserved stems using the Signal-to-Noise 
We use the Signal-to-Noise to assess the conserved stems. 
Here, the assessment means to determine whether the 
conserved stem belongs to a real RNA secondary structure 
or not. The major steps for assessing a conserved stem are: 
(1) We record the number of column pairs (see Figure 4) in 
the conserved stem as the Signal. (2) We generate a 
randomized alignment from the original alignment of the 
conserved stem. (3) We detect possibly conserved stems in 
the new alignment using the approach mentioned above. (4) 
We record the number of column pairs in the conserved 
stem newly detected by (3) as the Noise. The Signal-to-
Noise is thus computed by Signal / Noise. We set Noise to 
be 1 if there are no conserved stems in the randomized 
alignment, and we set Noise to be the maximum if there are 
more than one conserved stems. Figure 4 is an example for 
computing the Signal-to-Noise. 
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Figure 3: Finding conserved stems across multiple sequences by multiplying the position matrices: (a) is the sequence 
alignment, and (b) is for finding conserved stems shared by all sequences in the alignment 
 

 
Figure 4: The computing of the Signal-to-Noise: (a) is the original alignment of the conserved stem, here the Signal is 3. (b) 
is the randomized alignment generated by permuting the columns of the original alignment, here the Noise is 2. As a result, 
the Signal-to-Noise is 3/2  
 
The most difficulty in the approach mentioned above is 
how to generate a randomized alignment from the original 
alignment. To accomplish this purpose, we permute the 
columns of the original alignment until the common 
difference between the probability of the newest alignment 
and the probability of the last alignment is less than some 

given threshold (for example 0.001). To compute the 
probability of an RNA alignment, we introduce the so-
called profile SCFG [20]. The profile SCFG can be defined 
by the five-tuple Mol = {W, T, Al, E}, where Mol is the 
profile SCFG model, W is the set of non-terminals, T is the 
set of transition distributions, Al is the set of terminals, and 
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E is the set of emission distributions. We define them as 
follows: (1) W = {start, bifurcation, single, pair, end}. (2) T 
= [t (w, w')], where w and w' belong to W, and t (w, w') is 
the transition probability from w to w'. (3) Al = {A, C, G, 
U, _}n, where n is the number of sequences in the 
alignment and ‘_’ symbolizes the gap. (4) E = [ew], where 
w belongs to W. If w is the non-terminal pair, then ew 
should be e (β, β'). Here, both β and β' belong to Al, and 
they exactly form a column pair. If w is the non-terminal 
single, then ew should be e (γ). Here, γ is a single column 
which belongs to Al. Specially, the non-terminals, start, 
bifurcation and end do not produce any terminal.  
 
Specially, the profile SCFG presented here decomposes 
productions into two independent parts: non-terminal 
transitions and terminal emissions. The production rules 
can be categorized three classes: the pair rules, the single 
rules and the others. We describe them in Figure 5. The 
SCFG presented here has a great difference from other 
SCFGs, i.e., when a production rule is applied, a single 
column or a column pair not a single base or a base pair are 
generated. We use the inside-outside [20] method to 
estimate the parameters of the profile SCFG. And we 
change the original inside algorithm to compute the 
probability of an alignment. Actually, we use equation (3) 
and equation (4) (under supplementary material) to 
compute the probability of a derivation tree [20]. 
 
Improving the prediction of secondary structure using 
reliable conserved stems  
The central idea for improving structure prediction is first 
using RNAalifold to compute a basic structure and then 
using reliable conserved stems to revise it. Here, the 
reliable conserved stems refer to following two kinds of 
conserved stems: (1) The conserved stems with very high 
Signal-to-Noise. They are thought to belong to a real RNA 
secondary structure in our method. (2) The conserved stems 
with very low Signal-to-Noise. They are not thought to 

belong to any real RNA secondary structure in our method.  
 
Specially, we should remove some incompatible conserved 
stems before determining the reliable conserved stems. For 
two conserved stems across multiple sequences, we say 
they are incompatible if at least one of following rules is 
satisfied: (1) They share at least one stem in the same 
sequence (see Figure 6a). (2) Suppose stem1 and stem2 are 
in the same sequence and they belong to different 
conserved stems. The position relationship of stem1 and 
stem2 is not consistent with the position relationship of the 
two conserved stems (see Figure 6b). For two incompatible 
conserved stems, we remain the one with greater Signal-to-
Noise and remove the other. This is for selecting the first 
kind of reliable conserved stems. For selecting the second 
kind of reliable conserved stems, we can remain the one 
with lower Signal-to-Noise and remove the other. In this 
paper, the former is our selection.  
 
In summary, we compute the optimized secondary structure 
for a given RNA alignment by following steps: (1) We 
compute a candidate secondary structure using RNAalifold, 
which is a popular and powerful program for predicting 
RNA secondary structure at present. (2) We extract all 
sequences from the RNA alignment and detect all possibly 
conserved stems shared by them. (3) We compute the 
Signal-to-Noise for each conserved stem. (4) We remove 
incompatible conserved stems and determine the reliable 
conserved stems according to the Signal-to-Noise. (5) We 
add the base pairs which are included by the first kind of 
reliable conserved stems but not included by the prediction 
by RNAalifold into the candidate secondary structure. (6) 
We remove the base pairs which are included by both the 
second kind of reliable conserved stems and the prediction 
by RNAalifold from the candidate secondary structure. (7) 
We compute the final secondary structure by merging the 
results of (5) and (6). 

 

 
Figure 5: The production rules for Mol: (a) is for the pair rules. (b) is for the single rules. (c) is for the others  
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Figure 6: The condition for determining incompatible conserved stems; (a) is for the case that two conserved stems across 
multiple sequences share one same stem in one sequence. (b) is for the case that the position relationship of the two stems in 
one sequence is not consistent with the position relationship of the two conserved stems across multiple sequences  
 
Results: 
Test data sets 
We implement the method using C++ programming 
language and test it on data sets constructed from Rfam 8.0 
[18]. In more detail, we select 147 ncRNA families with 
sequence identity ranging from 40% to 99%. We 
respectively download the alignment of three sequences, 
four sequences and five sequences for each selected 
ncRNA family. In this way, we construct one data set of 
three-sequence alignments, one data set of four-sequence 
alignments and one data set of five-sequence alignments. 
Specially, the downloaded alignments are also used as the 
input for RNAalifold.  
 
To test the performance of our method and compare it with 
RNAalifold, we also downloaded the consensus secondary 
structure annotated by Rfam 8.0 for each alignment. 
Specifically, Rfam 8.0 contains consensus secondary 
structures for each alignment either taken from a previously 
published study or predicted using some covariance-based 
methods. To make the test data set more reasonable, we 
remove some seed alignments with only predicted 
secondary structures. We measured the accuracy as the 
sensitivity and the specificity of predicted base pairs. 
Actually, we compute the sensitivity as the number of true 
positives divided by the sum of true positives + false 
negatives, and the specificity as the number of true 
positives divided by the sum of true positives + false 
positives.  
 
Tests for multiple sequence alignments  
We test our method on data sets constructed in Section Test 
data sets. The results are compared with RNAalifold, using 
the parameters suggested by the authors of [9], and are 
reported in Table 1, Table 2 and Table 3 (see 
supplementary material for tables). The second and third 
columns in the tables are the results for our method. As 
shown in Table 1 (supplementary material), our method 
improves RNAalifold by 1.19% sensitivity and 4.21% 

specificity for three-sequence alignment tests. As shown in 
Table 2 (under supplementary material), our method 
improves RNAalifold by 2.07% sensitivity and 7.32% 
specificity for four-sequence alignment tests. As shown in 
Table 3 (in supplementary material), our method improves 
RNAalifold by 1.61% sensitivity and 4.65% specificity for 
five-sequence alignment tests. In general, our method has 
higher both sensitivity and specificity than RNAalifold.  
 
One interesting thing about the results is that our method 
performs much better than RNAalifold for some ncRNA 
families. Actually, for the families of RF00012, RF00554, 
RF00046 and RF00094, our method can successfully detect 
more than 90% base pairs while RNAalifold can not 
correctly predict any base pair. We failed to get any 
valuable result about RNAalifold even though we tried to 
change some parameters of the program. On the other hand, 
our method sometimes exhibits little improvement to 
RNAalifold. In more detail, for the families of RF00521, 
RF00019, RF00557and RF00455, RNAalifold has 100% 
sensitivity and greater than 95% specificity and hence our 
method does not improve it at all.  
 
Discussion:  
Despite the limited amount of data, we have shown in the 
experiments that our method can predict RNA secondary 
structure with a better performance than RNAalifold do. 
Actually, our method adds some base pairs possibly missed 
by RNAalifold using the first kind of reliable conserved 
stems. This perhaps increases the true positives and thus 
leads a higher sensitivity. On the other hand, our method 
removes some base pairs possibly mistaken by RNAalifold 
using the second kind of reliable conserved stems. This 
perhaps decreases the false positives and thus leads to a 
higher specificity. Furthermore, the increased true positives 
contribute to a higher specificity, too.  
 
In future work, our method can be improved by four means. 
One potential improvement could be computing the Signal-
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to-Noise (defined in Methodology) in more effective ways. 
In this paper, we use the number of column pairs (defined 
in Methodology) in the conserved stem to accomplish this 
purpose. One alterative approach could be incorporating the 
free energy with the number of column pairs to compute it. 
Another way to improve our method might be determining 
the reliable conserved stems by more intelligent 
approaches. For example, the first kind of reliable 
conserved stems perhaps leads to increased false positives 
when it increases the true positives. Similarly, the second 
kind of reliable conserved stems perhaps leads to decreased 
true positives when it decreases the false positives. As a 
result, these reduce the accuracy of our method. Third, one 
perhaps concerns about the time complexity of the method, 
especially for the algorithm for generating randomized 
alignment. To better this problem, we can devise new 
parallel algorithms to speed up the method. But this needs 
further studying to remain the accuracy of the method. 
Finally, much longer sequences and more complicated 
structures should be benchmarked to further evaluate the 
performance of the method. Also, more existing 
comparative methods should be chosen to compare with the 
method.  
 
Conclusion: 
In this paper, we design, implement and evaluate a stem-
based method for improving RNA secondary structure 
prediction. Our method detects conserved stems using the 
novel position matrix (defined in Methodology), assesses 
the conserved stems using the Signal-to-Noise, and 
improves RNAalifold using some reliable conserved stems. 
The fact that our method detects potential common stems 
shared by all sequences in the alignment can partly correct 
some prediction mistakes caused by alignment errors. 
Furthermore, the approach for detecting possible stems 
using the position matrix makes our method greatly differ 
from other methods. Finally, the approach for computing 
the optimized secondary structure using reliable conserved 
stems makes our method robust. As shown in the tests, our 
method can predict RNA secondary structure with much 
higher accuracy than RNAalifold program.  
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Supplementary material 
 
Equations 
M [i, j] = M1 [i, j] × M2 [i, j] → (1) 
Here, M [i, j], M1 [i, j] and M2 [i, j] are respectively the i, j element of M, M1 and M2. 
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Here, tk is the probability of one rule from (c) of Figure 5, and Tree is the derivation tree which uses l1 pair rules, l2 
single rules and l3 others. 
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Here, D is the alignment which can be parsed by l4 derivation trees in total given the profile SCFG, Mol. 
 
Tables 
Id (%)  Se (%) Sp (%) Se.RNAalif old (%) Sp.RNAalif old (%) 
<50  75.98 78.86 74.97 77.84 
50-60  50.29 58.06 48.59 51.30 
60-70  73.17 69.89 72.79 65.52 
70-80  56.67 49.88 55.87 44.34 
80-90  67.96 66.16 67.82 61.41 
90-100  62.56 54.61 59.44 51.80 
Total  64.44 62.91 63.25 58.70 
Table 1: Sensitivity and specificity on data set of three-sequence alignments. 
 
Id (%)  Se (%) Sp (%) Se.RNAalif old (%) Sp.RNAalif old (%) 
<50  75.16  89.96 74.60 86.84 
50-60  48.65  50.43 43.48 44.48 
60-70  74.88  59.21 74.56 56.64 
70-80  65.01  50.11 61.90 41.51 
80-90  73.18  67.11 71.51 64.10 
90-100  50.28  51.03 48.70 41.22 
Total  64.53  63.12 62.46 55.80 
Table 2: Sensitivity and specificity on data set of four-sequence alignments.  
 
Id (%)  Se (%) Sp (%) Se.RNAalif old (%) Sp.RNAalif old (%) 
<50  72.56  89.88 72.53 88.93 
50-60  51.01  56.73 49.20 49.27 
60-70  76.91  73.15 76.34 72.18 
70-80  64.99  48.93 62.09 39.64 
80-90  71.76  66.98 71.71 66.74 
90-100  51.35  51.01 47.32 42.05 
Total  64.76  64.45 63.15 59.80 
Table 3: Sensitivity and specificity on data set of five-sequence alignments. (Id-percentage identity; Se-sensitivity; Sp-
specificity) 
 


