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Abstract: 
CpG islands (CGIs) play a fundamental role in genome analysis and annotation, and contribute to improving the accuracy 
of promoter prediction. Besides, CGIs in promoter regions are abnormally methylated in cancer cells and thus can be used 
as tumor markers. However, current methods for identifying CGIs suffer from various drawbacks. We present a new 
algorithm for detecting CGIs, called CpG Island Finder (CpGIF), which combines the best features in the most commonly 
used algorithms and avoids their disadvantages as much as possible. Five public tools for CpG island searching are used to 
compare with CpGIF for the assessment of accuracy and computational efficiency. The results reveal that CpGIF has 
higher performance coefficient and correlation coefficient than these previous methods, which indicates that CpGIF is able 
to provide high sensitivity and specificity at the same time. CpGIF is also faster than those methods with comparable 
prediction accuracy.  
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Background: 
A CpG island is an unmethylated region in which CpG 
dinucleotides occur more frequently than in bulk DNA 
[1]. CpG islands are often associated with the promoters 
of most house-keeping genes and many tissue-specific 
genes, and thus have important regulatory functions and 
can be used as gene markers [2]. Most CGIs are non-
methylated at any stage of development with the 
exception of methylated CGIs associated with 
transcriptionally silent genes on the inactive X 
chromosome and imprinted genes [3]. In cancer cells, the 
DNA methylation patterns are altered. Many non-island 
CpG sites in the bulk genome become unmethylated, 
while promoters containing CGIs are abnormally 
methylated [4]. Methylation of promoter-related CGIs is 
associated with abnormal silencing of transcription and is 
a common mechanism of inactivation of tumor-
suppressor genes [4].  Since methylation of promoter 
CGIs is common in all types of cancer, the 
hypermethylated CGIs in promoter regions can be used as 
molecular tumor markers and make the early detection of 
cancer possible [4].  Identification of potential CGIs helps 
to find candidate regions for aberrant DNA methylation 
and therefore has contributed to the understanding of the 
epigenetic causes of cancer. CpG islands can be identified 
experimentally [5, 6] or computationally [7-11].  Recent 
studies have incorporated additional information, such as 
DNA sequence properties, DNA structure, and epigenetic 
states, into computational methods to predict the strength 
of each CGI quantitatively [12]. However, sequence-

criteria-based approaches are still crucial to generate an 
initial genome-wide map of CpG islands. 
 
There are several commonly used programs developed for 
locating CGIs in DNA sequences, including 
CpGPlot/CpGReport [7], CpGProd [8], CpGIS [9], 
CpGIE [10], and CpGcluster [11]. Most of those employ 
the sliding window technique with the exception of 
CpGCluster. The programs using the sliding window 
approach have the high capability combining small CpG 
islands. However, these methods suffer from several 
disadvantages: 1) the number and length of CGIs found 
depend on the window size and step size. If the window 
size is big, several short and loosely distributed CGIs 
might be clustered together to form a big one. 2) CGIs 
identified by those methods generally do not start and end 
with a CpG dinucleotide. 3) Because the window is 
moved in only one direction, those tools may not be able 
to locate CGIs accurately. 4) Longer running time. 
CpGCluster avoids the problems stated above and is 
much faster and more computationally efficient since it 
focuses on CpG dinucleotides and clusters neighboring 
CpG sites based on the physical distance between them. 
But several problems still exist in CpGCluster: 1) search 
results are dependent on the composition of the sequence 
scanned, i.e. a CGI identified in one sequence may be 
discarded when planted in another sequence with 
different composition. 2) Low prediction sensitivity. The 
CGIs detected by CpGClutser are usually short fragments 
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with high GC content and CpG observed/expected (o/e) 
ratio. This is the reason why the CGIs predicted by 
CpGCluster exhibit lower degree of overlap with Alu and 
higher degree of overlap with PhastCons.  
 
To overcome the shortcomings of these commonly used 
tools for CGI finding mentioned above, we propose a 
novel algorithm for CpG-island finding, called CpG 
Island Finder (CpGIF). Instead of using the sliding 
window approach, CpGIF first searches regions with high 
CpG density, named as seeds. The seeds are then 
extended and clustered into the final CGIs. CpGIF 
combines the best features in current algorithms and 
avoids their disadvantages mentioned above.  All CGIs 
predicted by CpGIF start and end with a CpG 
dinucleotide. 
 
Methodology: 
Our algorithm, CpGIF, was implemented in PERL, 
including a UNIX command-line application and a 
Common Gateway Interface (CGI) program. A web 
service and the source codes are available to public at 
http://www.usd.edu/~sye/cpgisland/CpGIF.htm. In 
CpGIF, a density cutoff is applied to exclude 
“mathematical CpG islands” caused by high G/C (or C/G) 
ratio. The same cutoff was also used in some previous 
tools, such as CpGIS.  
 
Our algorithm consists of four major steps. First, we scan 
the DNA sequence from 5’ to 3’ end to find all CpG 
dinucleotides and record their positions. Then, we try to 
identify all initial seeds with default density of 0.10. In 
this step, an array is built to record the numbers of Gs and 
Cs in each initial seed and in the region located between 
two adjacent seeds. In the following steps, we will keep 
updating the array to calculate the GC content and CpG 
o/e ratio. Next, initial seeds are extended iteratively by 
decreasing the density cutoff from 0.09 to 0.05. The 
cutoff is reduced by 0.01 in each iteration. Finally, two 
neighboring extended seeds are clustered together if the 
distance between them is less than the maximum length 
of two adjacent extended seeds or 100 nt, whichever is 
smaller. 
 
To assess the prediction performance of CpGIF and 
compare it to other programs, we created a set of test 
sequences by using the same method described by 
Hackenberg et al. [11]. The length of each known CGI in 
our test sequence is at least 200 nt since the same length 
criterion was used in all programs tested except 
CpGCluster. 
 
Results: 
The prediction accuracy of five commonly used programs 
and our algorithm CpGIF were evaluated with regard to 
nucleotide-level sensitivity (nSn), nucleotide-level 
specificity (nSp), nucleotide-level positive predictive 

value (nPPV), nucleotide-level performance coefficient 
(nPC), and nucleotide-level correlation coefficient (nCC). 
Table 1 shows the results of five statistics. 
 
The results reveal that the measures of correctness of 
CpGIF are higher than other programs. CpGCluster 
shows superb specificity and positive predictive value 
(99.98% and 99.9%, respectively), while the sensitivity, 
performance coefficient, and correlation coefficient are 
surprisingly low. This demonstrates that the results of 
CpGCluster depend on the composition of input 
sequences.   If the length of non-island sequences is much 
longer than that of known CGIs, the probability of 
observing a CpG in the test sequence and thus the p-value 
of each CGI would be low. That may be the reason why 
CpGCluster had a relatively high sensitivity in [11]. 
CpGReport is a tool with high specificity and positive 
predictive value but moderate sensitivity, performance 
coefficient, and correlation coefficient. CpGProD only 
has a high sensitivity, but the other four statistics are low.  
The prediction accuracy of CpGIS and CpGIE are about 
the same. They have a slightly better sensitivity than 
CpGIF, but CpGIF has higher values for all other four 
measures. As shown in Table 1, our algorithm CpGIF 
outperforms the other tools by three or more measures. 
 
One significant improvement in CpGIF is that it takes 
much less time to complete the search for CGIs. Table 1 
shows that CpGIS and CpGIE perform better than the 
other three commonly used tools. The algorithm in 
CpGIE basically followed that in CpGIS. Since CpGIE 
runs slower than CpGIS, we only compared the running 
time used by CpGIF with that of CpGIS. The results 
showed in Table 2 indicate that CpGIF runs much faster 
than CpGIS. The reason is that CpGIF only scans the 
sequence once for counting G and C nucleotides (in step 
2). In the extension and clustering steps, the GC content 
and CpG o/e ratio are calculated using the array that 
stores the G and C counts. This eliminates the redundant 
search for G and C and therefore greatly improves its 
computational efficiency. 
  
The average length of the CGIs returned by CpGIF is 
much longer than those of CGIs detected by CpGIS. This 
is due to the higher capability of CpGIF in combining 
short CGIs. We should note that most of CGIs detected 
by CpGIS do not start or end with a CpG dinucleotide. If 
the non-CpG sites are removed from both sides of CGIs, 
only 2163 (chromosome 21) and 4614 (chromosome 22) 
CGIs would meet the length criterion. For chromosome 
22, the total length of CGIs in the result of CpGIS is 
longer than that of CGIs returned by CpGIF. However, 
we observed that there are 2576 CGIs with length less 
than 210 nt and low CpG density. After excluding these 
CGIs, the total length would be about the same and the 
properties of CGIs become better when compared to the 
complete CGI list, but still worse than those of CGIs 
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returned by CpGIF (Table 2). The results show that CGIs 
predicted by CpGIS have the same or shorter length, 
lower CpG o/e ratio, and lower CpG density than those 
identified by CpGIF, indicating that CpGIF locates CpG 
islands more accurately. The difference between CpGIF 
and CpGIS in prediction accuracy comes from two major 
improvements in CpGIF. First, all CGIs identified by 
CpGIF start and end with a CpG dinucleotide. Thus, the 
island boundaries are accurately defined. Second, when 
CpGIF extends seeds, the CpG density cutoff is decreased 
by 0.01 at each of five iterations, which can ensure that 
segments with higher CpG density can be clustered 
together first and therefore circumvent the problems 
caused by the single moving direction. 
 
Conclusion: 
We designed and developed a new algorithm, named 
CpGIF, to predict CGIs in DNA sequences. It takes the 
advantages of widely used tools and improves the 
accuracy and performance significantly.  According to the 
length and accuracy of CGIs predicted and the running 
time needed, CpGIF is superior to other existing 
algorithms. 
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Supplementary material 
 
Statistical measures used to assess program prediction accuracy: 
The correctness of each tool is assessed at nucleotide level. The true positive (nTP), false negative (nFN), false positive 
(nFP), and true negative (nTN) at the nucleotide level are defined as followers: 

• nTP is the number of nucleotides in both known CGIs and predicted CGIs 
• nFN is the number of nucleotides in known CGIs but not in predicted CGIs 
• nFP is the number of nucleotides not in known CGIs but in predicted CGIs 
• nTN is the number of nucleotides in neither known CGIs nor predicted CGIs 
 

At nucleotide level, the sensitivity, specificity, positive predictive value, performance coefficient (nPC) , and the 
correlation coefficient (nCC)  are defined as: 

• Sensitivity: nSn=nTP / (nTP + nFN) 
• Specificity: nSp=nTN / ( nTN + nFP) 
• Positive predictive value: nPPV = nTP / (nTP + nFP) 
• Performance coefficient: nPC = nTP / (nTP + nFN + nFP), and 

• Correlation coefficient: nCC=
nFN)nFP)(nTNnFP)(nTPnFN)(nTN(nTP

nFPnFNnTNnTP

++++

×−×
 

 
 
program nSn nSp nPPV nPC nCC 
  CpGIF 0.905±0.002 0.855±0.004 0.892±0.002 0.816±0.003 0.761±0.005 
  CpGIS 0.916±0.004 0.772±0.002 0.843±0.001 0.783±0.002 0.703±0.005 
  CpGIE 0.924±0.003 0.752±0.001 0.832±0.001 0.779±0.002 0.694±0.004 
CpGCluster 0.113±0.003 1.000 0.999±0.001 0.113±0.003 0.227±0.003 
CpGProD 0.953±0.002 0.198±0.010 0.613±0.004 0.595±0.004 0.237±0.012 
CpGReport 0.759±0.005 0.958±0.001 0.961±0.002 0.737±0.004 0.714±0.004 

Table 1: Prediction accuracy of 6 programs. The criteria used in programs except CpGCluster are, length ≥ 200 nt, 
GC% ≥ 50%, and CpG observed/expected ratio ≥ 0.60. In CpGcluster, the 75th distance was used as the distance 
threshold and the p-value cutoff is 10-5. 

 
CpGIF CpGIS  

 Chr21   Chr22 Chr21 Chr22 Chr22* 

Number of CGIs 3371 6282 3704 9451 6875 
Total length of CGIs (nt) 1,469,179 2,833,741 1,280,505 3,363,395 2,842,255 
Average length of CGIs (nt) 436 451 346 356 413 
GC % 56.94±5.09 57.0±5.289 57.98±4.22 54.78±5.38 55.12±5.59 
CpG o/e ratio 0.68±0.09 0.67±0.074 0.66±0.09 0.63±0.061 0.64±0.069 
CpG density 0.055±0.013 0.054±0.013 0.054±0.012 0.044±0.013 0.048±0.014 
Running time (seconds) 109 155 19836 19237  
Table 2: Comparison of CpGIF and CpGIS for identifying CGIs. The subject sequence is human chromosome 21 
(length= 46,944,329 nt) and chromosome 22 (length=49,691,432 nt). The search criteria are: length ≥ 200 nt, GC% ≥ 
50%, and CpG observed/expected ratio ≥ 0.60. 
*: The CGIs with length lesser than 210 nt were excluded. If the non-CpG sites at both ends of CGIs are removed, these 
CGIs would not meet the length criterion. 


