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Abstract: 
DNA microarray allows the measurement of expression levels of tens of thousands of genes simultaneously and has many 
applications in biology and medicine. Microarray data are very noisy and this makes it difficult for data analysis and 
classification. Sub-dimension based methods can overcome the noise problem by partitioning the conditions into sub-groups, 
performing classification with each group and integrating the results. However, there can be many sub-dimensional groups, 
which lead to a high computational complexity. In this paper, we propose an entropy-based method to evaluate and select 
important sub-dimensions and eliminate unimportant ones. This improves the computational efficiency considerably. We 
have tested our method on four microarray datasets and two other real-world datasets and the experiment results prove the 
effectiveness of our method. 
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Background: 
The development of microarray technology has made it 
possible to measure the expression levels of tens of 
thousands of genes in parallel and enhance our 
understanding of functional genomics. An important task in 
DNA microarray data analysis is to identify genes which 
have similar expression patterns in order to understand 
their biological functions and cellular processes. This 
process can be done manually, in which case the amount of 
effort would be tremendous and intensive. Thus, it is 
important to develop computerized data analysis 
techniques, such as classification algorithms, which are 
needed in many applications. In our previous study, we 
proposed a sub-dimension based probabilistic neural 
network to solve this problem [1]. Probabilistic neural 
network (PNN) was first developed by D. Specht [2], [3]. It 
provides a general solution to pattern classification 
problems by using the Bayes strategy for probability 
density functions. It is frequently employed in pattern 
classification and microarray data clustering due to its 
prominent time efficiency. It provides a considerable 
improvement in training speed compared to the 
conventional back-propagation network (BPN). 
Furthermore, as discussed in [4], PNN could attain the 
same accuracy as back-propagation neural network (BPN).  
 
We assume that the input data consist of an n by d matrix 
X, where n is the number of genes (objects) and d  the 
number of conditions (features). The sub-dimension based 
method partitions the dataset into several smaller parts 
called sub-dimensions, which may or may not be disjoint 
[5]. It clusters the datasets based on their sub-dimensions. 
In our previous study, a voting system was used to 

combine all sub-dimension class results. We assigned two 
objects x1 and x2 to the same group if more than half of the 
sub-dimensions x1j and x2j belong to the same group. 
Experiment results show that the method is effective [1]. 
However, the enormous number of features in the real 
world microarray datasets makes it difficult to select the 
optimal sub-dimensions. One method is to reduce the 
dimensionality. In the classification, the contribution of 
each sub-dimension is not equal. Some may be corrupted 
or less relative to others, which can be discarded without 
degrading the performance of the system. In this paper, we 
employ the feature evaluation and selection technique to 
determine the sub-dimensions that are not as important as 
others in order to reduce the number of sub-dimensions 
without affecting the classification accuracy.  
 
The aim of feature selection is to discriminate features 
which contain the most or the least effective information 
from an original candidate set. Feature selection algorithms 
have been well researched in this area. In our study, we 
apply the entropy based measure combined with the sub-
dimension method. Entropy based methods have been used 
in many areas, such as mathematics, communication 
theory, and economics. In 1948, Shannon [6] first 
introduced the basic entropy and the information gain 
concept to the information domain. “Entropy is a measure 
of the amount of uncertainty in the outcome of a random 
experiment, or equivalently, a measure of the information 
obtained when the outcome is observed.” [7] In our study, 
the entropy can be said to be the measure of contribution 
that a single sub-dimension makes to the general 
classification. Aiming to show the convincing performance 
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of the proposed method, normal PNN and sub-dimension 
combined PNN are used in experimental comparison. In 
this paper, we first briefly review the structure of the PNN, 
discuss the sub-dimension formulation, and introduce the 
entropy concept. Then, we describe the proposed method 
and present experiment results from six datasets. 
 
Methodology: 
Please see supplementary material. 
 
Discussion: 
Experiments based on the proposed method are performed 
on four microarray datasets including yeast cell cycle data, 
sporulation data, rodrigues data, and annot data [11]-[14]. 
To verify the proposed method, we also present the 
experiment results on other datasets, including wine data, 
Wisconsin diagnostic breast cancer (wdbc) data. For each 
dataset, we run the steps in section II 30 times and compute 
their average to evaluate the performance.  
 
Real world data 
In order to evaluate the performance of the proposed 
method for noisy data, we added white Gaussian noise 
(wgn) randomly into the features of entire datasets as a 
form of corruption. The wine dataset contains 178 objects 
in three groups and 13 features. In our experiment, we 
adopt 78 objects as training samples and the remaining 100 
objects for testing. As shown in Table 1 (supplementary 
material), the sub-dimension based PNN obtains 90 correct 
out of 100, compared with 71 correct out of 100 in normal 
PNN. However, with 89% accuracy, we can see that the 
proposed method provides a comparable performance with 
the sub-dimension based PNN.  
 
The wdbc dataset has 576 objects in two classes and 30 
features in which 276 training samples and 300 testing 
samples are used to test the recognition results. As in the 
case for the wine data, the proposed method shows close 
results in the wdbc dataset, 279 correct classifications 
compared with 280 by the sub-dimension based PNN, and 
is superior to the normal PNN.  
 
Microarray data 
The yeast cell cycle dataset consisting of 6220 genes is 
published by Cho and colleagues [11]. In the study of the 
sub-dimension method [5], we adopt 384 genes and 
normalized each gene expression profile so that it has zero 
mean and unit variance. The dataset has five cycle phases 
which are the G1 phase, late G1 phase, S phase, S2 phase 
and M phase, and 17 time points. The results are given in 
Table 3 under supplementary material. The proposed 
method correctly classifies 149 out of 200 testing samples 
and the sub-dimension based PNN correctly classifies 150. 
The error is only 0.5%.  
 
The sporulation dataset contains 6118 genes with seven 
features. In [5], after pre-processing, we use only 1136 
genes of which the value of the root mean square of the 
log2 transformed the data greater than 1.13. The dataset 
has seven phases: metabolic, early I, early II early middle, 
middle, mid-late, and late. We use 736 genes for training 
and the remaining 400 genes for testing. As shown in Table 
4 (supplementary material), the proposed method works 

well with an accuracy rate of 48.5% (194 out of 400) 
compared with 49.5% for the sub-dimension based PNN.  
 
Rodriguez dataset is available elsewhere [13]. It contains 
974 genes clustered to nine groups with 47 features and 
500 of the genes are used for testing. Clearly Table 5 
(supplementary material) shows that the proposed method 
achieves an improvement of the same recognition accuracy 
with the sub-dimension based PNN (82.4%). As 
comparison, the normal PNN classification results are 
79.6% accuracy. Similar results on the Annton dataset, 
containing 639 genes in five classes and 47 features, of 
which half are in the test set. As expected, the test set 
presents almost the same success as the sub-dimension 
based PNN, at 73% accuracy. The normal PNN could only 
obtain 283 correct out of 400 testing data. As shown in the 
tables (under supplementary material), the proposed 
method performs very closely to the sub-dimension based 
PNN which uses all sub-dimension features.  
 
Conclusion: 
Instead of considering all features of datasets in a classifier, 
our previous paper [1] implemented the PNN classification 
on single sub-dimensions. However, the number of 
combinations of sub-dimensions is large and this overall 
system computationally to complicated. In this paper, a 
feature evaluation and selection technique based on an 
entropy definition is used to measure the contribution of 
each sub-dimension. The sub-dimension with the lowest 
contribution to the overall classification is discarded. 
Experiments on two real world datasets and four 
microarray datasets show clearly that the achievement of 
the proposed technique is remarkable better than the 
normal PNN and as good as the sub-dimension based PNN. 
However the system complexity is significantly reduced 
and the classification speed is increased. The feature 
evaluation and selection are especially effective and 
convenient when the input features are large and the 
datasets are noisy. At the rank of the corresponding 
information gain G, the importance of the sub-dimension 
decreases while G reduces. Good performance selection 
occurs particularly at the top of the rank. However, how 
many sub-dimensions should be considered as important is 
a critical issue which needs to be investigated further.  
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Supplementary material  
 
Classification method: 
Probabilistic Neural Network: 
Instead of using the conventional BPN, we adopt the PNN in the proposed method, considering its primary advantages of 
convenient binary outputs and fast training speed. PNN is based on the Bayes strategies, which are implemented by a method 
which minimizes the “expected risk” of misclassification [1], [2]. Considering a two-category situation for instance, the 
problem is to decide to which classes pattern X  would belong, Aθ  or Bθ . In this case, the Bayes decision rule is written 
as follows:  
 

( ) AXd θ=     if  ( ) ( )XflhXflh BBBAAA >  
 

( ) BXd θ=     if  ( ) ( )XflhXflh BBBAAA <   →            (1) 
 
where  and  are the probability density functions for categories ( )Xf A ( )XfB Aθ  and Bθ , respectively;  is the loss 

function associated with the decision 
Al

( ) BXd θ=   when the truth is Aθ ,  is the loss function associated with the 

decision 
Bl

( ) AXd θ=  when the truth is Bθ ;  and  are the a priori probabilities of the occurrence of patterns from 

categories 
Ah Bh

Aθ  and Bθ , respectively.  
 
The main task of implementing Equation (1) is to estimate the probability density function for each class according to a set 
of known training patterns. As in papers [1] and [2], it is shown that a particular estimation of a probability density function 
of category Aθ  is  
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where m is the total number of training patterns; XAi is the i-th training pattern form category Aθ ; σ  is the smoothing 

parameter.  is the sum of multivariate Gaussian distributions centered at each training sample. It could be any 
smooth density function, not limited to the Gaussian.  

( )Xf A

 
The PNN network consists of input units, two hidden layers, and output units. Figure 1 shows the PNN structure for a two 
group classification. The input units in the PNN correspond to input features. The first hidden layer is called pattern units. In 

each unit, input pattern X  is performed a dot product with a weight vector , iW ii WXZ ⋅= , and then a nonlinear 
operation is implemented. Unlike back-propagation, the sigmoid activation function is replaced by an exponential function 
which could be represented as follows:  
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( )[ ]2/1exp δ−iZ . →         (3) 
 
If both X  and  are normalized to unit length, Equation (3) becomes:  iW
 

( ) ( ) ( )[ ]22/exp δXWXW i
t

i −−− .     → (4) 
 
Summation units which are the second hidden layer simply sum the input from the corresponding pattern units according to 
the training process. The connection between two hidden layers is made in such a way that each pattern unit in the first layer 
matches only one appropriate node in the second layer.   
 
The output units, or decision units, simply produce a binary output, as indicated in Figure 1. PNN employs the training 
patterns to estimate the probability distribution of each class during the training routine, and classifies the input according to 
the weighted average of the closest training examples in the testing process. In this paradigm, learning for small and 
moderate sized databases is faster since the iteration process is avoided. However, the entire training datasets need to be 
stored and large networks require large databases. These are the disadvantages of PNN [8].  
 
Sub-dimension: 
The sub-dimension method [4] can be implemented by dividing the databases into smaller parts and applying the 
classification procedure to each part. Let  be a matrix with i  objects (rows) and ijx j  features (columns), and  

 

[ ]dj AAAAX LL21=
  

 
where ,  represents the dj ≤≤1 jA j th feature of all objects. We redefine 

 

[ ]pBBBX L21=   

[ ]jsjjj AAAB L21=   

 
where ,  represents the number of features in each sub-dimension and dp ≤ s ds ≤ . Now X  is expressed by a set of 

overlapping sub-dimensions . jB
 
Instead of considering all features as evidence for classification, the sub-dimension based PNN algorithm takes the sub-
dimension  as the input pattern and implements the PNN classification to each sub-dimension respectively. The 

observable benefit of this approach is that results of each sub-dimension are hardly affected by features in other sub-
dimensions. In a previous study, we simply employed the majority decision as the class label determination. We concluded 
that object  is closer to  than  when more than half of the sub-dimensions  are closer to  

than . This can be formulated by:  

jB
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where  refers to the cardinality (or the number of elements) of the set  [5]. Applying Equation (5) to earlier 

experiments, we assigned object  to a group, if a majority of sub-dimensions  are classified to that group. 

( )SCard S
ix ijx
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Entropy Measure: 
Theoretically, the initial entropy definition of a discrete variable X is as follows [9]:  

∑−= iin ppH 2log  

where  represents the uncertainty or the entropy of the set of probabilitiesnH npp ⋅⋅⋅1 .   
 
In [10], it is considered that objects are distributed into l  classes. Let “ ,” “ ,” … “ ,” … “ ,” be the general 
information of each class. The information of the overall classification which adopts all features can be given as:  

1w 2w iw lw

( )[ ] ( ) (∑
=

−=
l

i
ii wPwPlpCI

1
2log, )  ,           →       (6) 

where  is the probability that one object falls in class  . It can be estimated from:  ( iwP ) iw
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where  is the number of objects falling in class , ( iwN ) iw li ,...,2,1= , and  is the total number of objects,  N
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Based on the definition above, the conditional probability can be used as the measure of the contribution of single sub-
dimension entropy to the overall classification. For the j th input sub-dimension, the PNN classifier is applied. Data are 

classified into l  clusters, , , … , , …, , 1jR 2jR jkR jlR lk ,...,2,1= . Then we estimate  

( ) ( )
N
RN

RP jk
jk =  ,                    →               (9) 

 

( ) ( )
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jki RN

RwN
RwP

,
=  .          →         (10) 

where ( )jkRP  is the probability of objects falling in the k th cluster. The conditional probability ( )jki RwP  represents 

the probability of an object in cluster  to be classified into class . k iw ( )jki RwN ,  is the number of objects in cluster  

that are classified into class  and 

k

iw ( )jkRN  is the total number of objects in the k th cluster. Then we have  

( ) (∑
=

=
l

i
jkijk RwNRN

1
, )  .             →          (11) 

The j th sub-dimension entropy can be defined as:  

( ) ( ) ( ) (∑ ∑
= =

−=
jK

k

l

i
jkijkijk RwPRwPRPjE

1 1
2log )  . →   (12) 

The corresponding information gain of the j th sub-dimension clustering is  
 

( ) ( )[ ] ( )jElpCIjG −= ,  .           →             (13) 
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Since the information of the overall classification ( )[ ]lpCI ,  is a constant for all sub-dimensions, a small ( )jE  

produces a large . If all objects within the k( )jG th cluster are from the same class , and ,  reaches its 

minimum value 0, while  reaches its maximum value, 

iw kwi = ( )jE

( )jG ( )[ ]lpCI , . Our classification results would therefore fully 

depend on a single sub-dimension. On the contrary, when ( )jE  reaches its maximum value ,  will reach its 

minimum value,

L2log ( )jG

( )[ ] LlpCI 2log, − , where ( ) lRwP jki /1= , li ,...,2,1=  and lk ,...,2,1= . Our 

classifications in the sub-dimension would therefore perform at poor accuracy. To sum up,  represents the 

contribution that the 

( )jG
j th input sub-dimension makes to the general classification. The larger  is, the greater the sub-

dimension contribution is [10].  
( )jG

 
Applying the entropy measure to the proposed method, we can choose sub-dimensions with large  values and 
abandon the smaller ones to reduce the feature inputs. For each sub-dimension, we compute the entropy and calculate the 
corresponding information gainG . The process is carried out on all sub-dimensions. A set of G  is attained which 
represent the donations of each sub-dimensions. After the comparison of the  value, the sub-dimension with the lowest 

 is discarded. Then we vote for each testing object and choose the majority result as the class label.  
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