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Abstract: 
Hub proteins (those engaged in most physical interactions in a protein interaction network (PIN) have recently gained much research interest 
due to their essential role in mediating cellular processes and their potential therapeutic value. It is straightforward to identify hubs if the 
underlying PIN is experimentally determined; however, theoretical hub prediction remains a very challenging task, as physicochemical 
properties that differentiate hubs from less connected proteins remain mostly uncharacterized. To adequately distinguish hubs from non-hub 
proteins we have utilized over 1300 protein descriptors, some of which represent QSAR (quantitative structure-activity relationship) 
parameters, and some reflect sequence-derived characteristics of proteins including domain composition and functional annotations. Those 
protein descriptors, together with available protein interaction data have been processed by a machine learning method (boosting trees) and 
resulted in the development of hub classifiers that are capable of predicting highly interacting proteins for four model organisms: 
Escherichia coli, Saccharomyces cerevisiae, Drosophila melanogaster and Homo sapiens. More importantly, through the analyses of the 
most relevant protein descriptors, we are able to demonstrate that hub proteins not only share certain common physicochemical and 
structural characteristics that make them different from non-hub counterparts, but they also exhibit species-specific characteristics that 
should be taken into account when analyzing different PINs. The developed prediction models can be used for determining highly 
interacting proteins in the four studied species to assist future proteomics experiments and PIN analyses. 
 
Availability: The source code and executable program of the hub classifier are available for download at: http://www.cnbi2.ca/hub-analysis/ 
 
Keywords: QSAR; biological data; descriptors; protein interactions; network 
 
Background: 
The accumulation of vast amount of protein sequences and 
interaction data has not only accelerated study of cellular processes, 
but also revealed the underlying complexity of protein interactions. 
Previous protein interaction network (PIN) studies have 
demonstrated a characteristic distribution of interacting proteins, 
where the majority of them have a low number of connections, 
while there are few proteins that are involved in the majority of 
network interactions [1]. Those highly-connected proteins are 
referred as ‘hubs’ - the name that emphasizes a central role of such 
proteins in cellular processes. Naturally, such hub proteins represent 
attractive study objects helping our understanding of cellular 
interactions and promising new and intriguing opportunities for 
therapeutics development. Identification of high PIN interactors is 
straightforward when there is a large amount of interaction data 
available for a given proteome. However, the task of finding hubs in 
species that lack protein interaction information appears to be 
difficult. Many computational methods have been proposed for 
predicting pairwise protein interactions [2]. Those predictors 
demonstrate different degrees of accuracy, but none of them have 
actually been focused on explicit identification of protein hubs. 
Thus, it remains mostly unknown which structure- and/or sequence- 
related features can distinguish hubs from other proteins. 
 
In our previous work [3], we have constructed a classifier capable of 
distinguishing hubs and non-hubs with reasonable accuracy by 
utilizing the Gene Ontology (GO) annotations for hub prediction. 
Although the developed hub classifier has demonstrated suitable 
performance (28% sensitivity and 90% specificity), it was limited to 
the extent of available GO data and relied on the expert knowledge 
on proteins. In continuation of that work we have also had some 
success in employing a QSAR (quantitative structure-activity 
relationship) approach that utilized 75 physical and chemical 
descriptors to predict hub proteins in Methicillin-Resistant 
Staphylococcus aureus MRSA252 proteome [4]. Although the study 
was focused on a small subset of MRSA252 proteins, it has 
demonstrated the possibility of relatively accurate hub 
characterization based on physicochemical properties. The aim of 
the current study is to further improve our understanding of hub 
proteins through the use of a comprehensive set of 1300 protein 
descriptors reflecting their physicochemical properties (quantified 

through QSAR descriptors), as well as their domain and fold 
composition, cellular function and sequence similarity. We focused 
our efforts on determining common and distinctive features of the 
protein hubs in four model organisms: Escherichia coli, 
Saccharomyces cerevisiae, Drosophila melanogaster and Homo 
sapiens. Furthermore we have demonstrated the feasibility of 
combining numerous protein descriptors to construct boosting trees-
based hub classifiers.  

 
Methodology: 
Figure 1 illustrates the entire process for the characterization and 
prediction of hub proteins.  
 
Acquisition of protein-protein interaction data: 
Experimental protein interaction data used in constructing hub 
classifiers were obtained from the IntAct database [5] for the 
following four species: Escherichia coli K 12, Saccharomyces 
cerevisiae, Drosophila melanogaster, and Homo sapiens (dated by 
Sep. 25th, 2007). Proteins were ranked based on their number of 
interactions within the same species, with the top 10% interactors 
considered as hubs (the same hub parameters in our previous studies 
[3, 4]). 
 
Calculation of protein descriptors: 
To fully characterize each protein in our dataset, over 1300 
descriptors have been calculated and grouped into following five 
categories:  
 
Gene Ontology (GO) annotations: 
GO data [6] were obtained from the Uniprot Retrieval System [7] 
using unique UniProt protein accession numbers. To achieve a 
reasonable level in GO data hierarchy, we adapted a generic GO 
annotation level determined by the “GO slim” project. The resulting 
GO descriptor had a binary form, where ‘1’ indicates that a protein 
has a certain GO annotation, while ‘0’ indicates its absence. More 
details can be found in [3]. 
 
Sequence conservation: 
We compared the constituent proteins to 10 selected reference 
proteomes (2 Archaea, 4 Bacteria and 4 Eukaryota species) with 
protein sequences obtained from the UniProt database [7] and 
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RefSeq database [8]. The presence of similar sequences was 
determined based on the following BLAST criteria: e-value ≤ 10^5, 
similarity ≥ 50%, and alignment coverage ≥ 80%. Each of the 10 
reference proteomes served as a binary protein descriptor, where ‘1’ 
indicates that a given protein has a homolog in a reference 
proteome, while ‘0’ indicates its absence. 
 
Number of Pfam protein domains: 
Each protein in the training set has been associated with Pfam 
domains [9] through the Uniprot Retrieval System [7] (dated by 
Oct. 1st, 2007). Descriptors were used to record the total number of 
Pfam domains for each protein. Among all identified Pfam domains 
a subset had the iPfam association representing interacting domains 
identified specifically from known protein complexes. The iPfam 
characteristics were obtained from the iPfam database [10] (version 
20). 
 
Protein threading scores and SCOP protein domain 
composition: 
Descriptors in this category were derived in two steps. First, each 
protein sequence in the training set was compared against 8,539 
PDB structural templates implemented by the THREADER 3.5 
program [11] (threading template library obtained on Feb. 7th, 
2008). The Z-score, which represents the fitness measure, was 
calculated for each pair of the query protein and each structural 
template. In the second step, each template in the library was linked 
to a specific SCOP domain classification number [12] (version 
1.73). To achieve a manageable number of descriptors, the protein 
templates were grouped at their first (Class) and second level (Fold) 
levels of the SCOP classification. As a result, 8,539 PDB templates 
were classified into 1,105 folds resulting in 1,105 SCOP descriptors 

for this category. 
 
Physicochemical properties: 
A total of 75 sequence-based physical and chemical descriptors 
were calculated and used for training hub classifiers. Those 
descriptors quantify such protein properties as molecular weight, net 
charge, isoelectric point, hydrophobicity, surface area, solvent 
accessibilities, electronegativity, secondary structure composition, 
surface coils and flexibility, among others. The protein descriptors 
calculated by the QSAR approaches are described in more details in 
our previous work [4].  
 
Training and testing hub classifiers by boosting trees: 
We have applied two rounds of training to select descriptors that 
were more capable of differentiating hubs and non-hubs. During 
both rounds each hub classifier was trained individually for each of 
the four species, and a four-fold cross-validation strategy was used 
(75% training and 25% testing). Each training and testing set had 
the constant hub to non-hub (1:9) ratio. The models were trained 
and tested by using the boosting trees method as implemented in 
STATISTICA version 8 [13]. 
 
In the first round of training, all descriptors (~1300) were used, and 
the top 20% descriptors with the highest predictor importance 
values were selected for the second round of training. Four 
classifiers were built for each species (one for each of the four 
cross-validation samples) and compiled in the C++ language under 
Linux. A final consensus hub classifier was built for a given species 
(by a consensus voting method where a hub is predicted if it has two 
or more votes) and tested on the other three species, which were 
used as an external validation set. 

 

 
Figure 1: A flow chart for the characterization and prediction of hub proteins. 
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Discussion: 
Prediction performance of the hub prediction classifiers 
Table 1 (see supplementary material) show the classification 
statistics for the hub classifiers trained and tested on E.coli, S. 
cerevisiae, D. melanogaster, and H. sapiens proteomes respectively. 
When the classifiers were tested on the same species using the four-
fold cross-validation procedure, they all have shown improved 
prediction performance in comparison to our previous GO-based 
classifier. For instance, the E. coli hub classifier has achieved 
51.40% sensitivity and 32.59% PPV and the S. cerevisiae hub 
classifier has reached 62.99% sensitivity and 33.37% PPV on the 
testing sets; these values are significantly higher than 28.10% 
sensitivity and 22.00% PPV that we have reported in of our 
previous work [3]. 
 
However, when a classifier trained for one species is applied to 
another one, its prediction accuracy decreases. On one hand, these 
results suggest that hub proteins within the same species have 
enough commonality so the species-specific hub predictors 
demonstrated reasonable accuracy. On the other hand, the diversity 
among hubs from different species appears to be much greater; 
therefore, it is not always feasible to apply the hub classifier trained 
from one species to another. 
 
Comparing hub prediction with a traditional approach based 
on sequence conservation  
We have investigated a traditional hub prediction approach based on 
the idea that if a hub protein from one species is conserved in the 
second species, then it is likely that the conserved protein is also a 
hub. By examining the degree of sequence conservation in the 
studied data sets, we found conserved proteins do not necessarily 
behave like hubs in the other species. Our analysis has shown that 
the percentage of conserved hubs (homologous proteins that are 
hubs in both species) is relatively low (1.05% ~ 10.00%). Thus, 
such a hub prediction strategy solely based on sequence 
conservation has produced a very low sensitivity (0.48% ~ 11.59%). 
We suspect that there are two contributing factors: 1) lack of 
complete protein interaction data and 2) natural differences in PIN 
of the species that might have occurred as the result of evolutionary 
network rewiring. 
 
Thus, the above results indicated that our prediction models based 
on the protein descriptors are more capable of determining hub 
proteins than the traditional sequence conservation approach. 
 
Characteristics of hub and non-hub proteins 
The utilization of the 1300 protein descriptors has enabled not only 
construction of hub classifiers but also allowed characterization of 
hub proteins in each of the four species: E. coli, S. cerevisiae, D. 
melanogaster, and H. sapiens.  
 
Notably, different descriptor categories have shown different 
contributions to the final descriptors set. For example, only a small 
percentage of Gene Ontology descriptors (5~12%) and SCOP fold 
descriptors (17~18 %) have been selected, while Pfam descriptors 
(25~100%) and physicochemical parameters (60~75%) were among 
the most relevant ones. The sequence similarity descriptors also 
showed a high contribution rate. In the next sections, we report the 
similarities and differences between hubs and non-hubs among the 
four species by focusing on some of the more relevant protein 
descriptors. 
  
Gene Ontology (GO) annotations 
The advantage of using the GO terms in hub prediction is in 
availability of GO information for proteins in hundreds of species, 
and that they can provide useful insight into their cellular functions 
and locations. However, we have observed that the level of GO 
annotations could vary greatly among the species. For instance, 
among the four studied species, S. cerevisiae had the highest 
percentage of the proteins with GO annotations (87.8%), while only 
48.2% of the proteins in E. coli could be related to a particular GO 
term.  
 

Our results have indicated that certain GO terms tend to appear 
more frequently for hubs. For instance, the GO term, [protein 
binding], appears to be the most frequent one. Several others such 
as [cytoplasm], [protein complex], [nucleolus], [nucleobase, 
nucleoside, nucleotide and nucleic acid metabolic process], 
[nucleoplasm] and [response to endogenous stimulus] are also 
associated with highly interacting proteins. 
 
Sequence similarity 
In this category of the descriptors, one of the most notable 
observations is that hubs in general have higher sequence 
conservation compared to non-hubs. We have conducted two 
sample t-tests comparing hubs and non-hubs in terms of their 
occurrence of homologous proteins in the 10 reference proteomes, 
and the difference is significant within E. coli, S. cerevisiae, and H. 
sapien, except for D. melanogaster. 
 
Number of Pfam protein domains 
Previous studies have suggested that the presence of multiple 
interaction interfaces on a protein surface can be an indication of its 
hub role [14]. In this study, we have observed that hubs in E. coli 
and S. cerevisiae indeed contain more Pfam domains than non-hubs 
(p-values = 0). However, the difference in the number of Pfam 
domains between hubs and non-hubs in D. melanogaster and H. 
sapiens appeared to be not significant. 
 
Protein threading scores and SCOP protein fold composition 
One of the main advantages of SCOP classification as descriptors is 
in the general availability of these structural parameters for any 
protein sequence as they can be obtained easily from the threading 
program. It is notable that many SCOP descriptors have shown a 
good ability to distinguish hubs and non-hubs. However the 
majority of such SCOP descriptors did not follow a simple trend 
across all of the 4 species but instead have complex characteristics 
where hubs might be associated with a certain SCOP fold more 
frequently than non-hubs in some species but not in the others. Two 
notable examples are the ‘PDZ domain-like’ and ‘beta-Grasp 
(ubiquitin-like)’ folds. The hubs are associated with the two folds 
more often than the non-hubs in E. coli and H. sapiens, but not in S. 
cerevisiae, and D. melanogaster. 
 
Physicochemical properties 
The descriptors in this category have contributed greatly to the 
discriminative power of the hub classifiers due to the unbiased 
characterization of all the studied proteins in terms of their physical 
and chemical properties. One of the observed trends is that the 
average hydrophilicity of hubs is significantly higher than that of 
non-hubs in all four species. This can be explained perhaps by the 
fact that hubs tend to contain more polar residues on the surfaces, 
which facilitate protein-protein interactions. 
 
Another protein descriptor, fraction of flexible coil residues, also 
demonstrated higher values for hubs in all four species. This 
observation agrees with previous studies [15] that suggested that 
structural disorder is a common feature of hub proteins. The 
hubs/non-hubs discriminative power of others physicochemical 
descriptors such as surface area and average surface polarizability is 
also high. However, the observations are more complex for these 
descriptors because their values are higher for hubs than non-hubs 
in some species, but lower in the others. It is also notable that the 
absolute values of average hydrophilicity of E. coli proteins are the 
smallest among the studied species. This in turn can be related to 
the fact that E. coli proteins have the smallest average surface area 
among the studied proteins. The above results showed that the 
physicochemical descriptors allowed us to derive meaningful 
observations, interpretable from the stand point of protein biology. 
In addition, these descriptors also demonstrated the complexity of 
hub characteristics among the different species. 
 
Conclusion: 
The use of a comprehensive set of sequence- and structure-derived 
descriptors has enabled in-depth characterization of hub proteins. 
On one hand, hubs in E. coli, S. cerevisiae, D. melanogaster, and H. 
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sapiens generally have demonstrated higher sequence conservation, 
tend to be more hydrophilic and possess higher fraction of flexible 
coil residues. On another hand, hubs have exhibited several species-
specific characteristics including certain associated GO terms, 
occurrence of Pfam domains, more frequent SCOP folds, and 
surface area. 
 
Thus, the descriptor analyses have indicated (somewhat 
surprisingly) that highly connected proteins are much more different 
across the species than previously anticipated. Thus, it has become 
clear that hub proteins cannot be characterized easily by only a few 
descriptors, but the use of a complex set of protein descriptions is 
required. Nonetheless, by integrating both bioinformatics and 
physiochemical protein descriptors, the species-specific hub 
classifiers have still shown improved prediction accuracy over their 
GO term-based and sequence similarity-based predecessors. We 
anticipate that the developed hub classifiers can be used for 
determining new hubs in the four studied species to assist future 
proteomics experiments and PIN analyses. 
 
Acknowledgement:  
MH was supported by the Michael Smith Foundation for Health 
Research (MSFHR) and the Natural Sciences and Engineering 
Research Council (NSERC). MH, KB and AC were funded by 
Genome Canada and Genome BC through the PRoteomics for 
Emerging PAthogen REsponse (PREPARE) project. 
 

Reference: 
[1] AL Barabasi et al., Nat Rev Genet. 5: 101 (2004) 

[PMID:14735121] 
[2] Y Qi et al., Proteins. 63: 490 (2006) [PMID:16450363] 
[3] M Hsing et al., BMC Syst Biol. 2: 80 (2008) 

[PMID:18796161] 
[4] K Byler et al., QSAR & Combinatorial Science 28: 509 

(2009) 
[5] H Hermjakob et al., Nucleic Acids Res. 32: D452 (2004) 

[PMID:14681455] 
[6] E Camon et al., Nucleic Acids Res. 32: D262 (2004) 

[PMID:14681408] 
[7] UniProt Consortium, Nucleic Acids Res. (2009) 37: D169 

[PMID: 18836194] 
[8] KD Pruitt et al., Nucleic Acids Res. 35: D61 (2007) 

[PMID:17130148] 
[9] RD Finn et al., Nucleic Acids Res. 36: D281 (2008) 

[PMID:18039703] 
[10] RD Finn et al., Bioinformatics 21: 410 (2005) 

[PMID:15353450] 
[11] http://bioinf.cs.ucl.ac.uk/threader/ 
[12] AG Murzin et al., J Mol Biol. 247: 536 (1995) 

[PMID:7723011] 
[13] http://www.statsoft.com/ 
[14] PM Kim et al., Science 314: 1938 (2006) [PMID:17185604] 
[15] C Haynes et al., PLoS Comput Biol. 2: e100 (2006) 

[PMID:16884331] 
 

Edited by P. Kangueane 
Citation: Hsing et al., Bioinformation 4(4):  164-168 (2009) 

License statement: This is an open-access article, which permits unrestricted use, distribution, and reproduction in any medium, for non-
commercial purposes, provided the original author and source are credited. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Bioinformation  open access 

www.bioinformation.net  Hypothesis
 

   
ISSN 0973-2063 (online) 0973-8894 (print)   
Bioinformation 4(4): 164-168 (2009)  © 2009 Biomedical Informatics 
 

168

Supplementary material: 
 
Table 1:  Prediction performance of hub classifiers based on the 4-fold cross validation testing.  
  sensitivity specificity accuracy PPV NPV 
E. coli 51.40% 88.19% 84.51% 32.59% 94.23% 
S. cerevisiae 62.99% 86.16% 83.86% 33.37% 95.49% 
D. melanogaster 41.24% 83.86% 80.00% 20.28% 93.48% 
H. sapiens 26.61% 88.78% 82.93% 19.76% 92.10% 
Sensitivity = TP / (TP + FN), Specificity = TN / (TN + FP), Accuracy = (TP + TN) / (TP + TN + FP + FN), PPV (Positive Predictive Value) 
= TP / (TP + FP), NPV (Negative Predictive Value) = TN / (TN + FN) where TP = number of true positive, FP = number of false positive, 
TN = number of true negative, and FN = number of false negative. 
 
 
 
 
 
 
 
 
 
 
 
 
 


