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Abstract: 
The microarray technique has become a standard means in simultaneously examining expression of all genes measured in different 
circumstances. As microarray data are typically characterized by high dimensional features with a small number of samples, feature selection 
needs to be incorporated to identify a subset of genes that are meaningful for biological interpretation and accountable for the sample variation. In 
this article, we present a simple, yet effective feature selection framework suitable for two-dimensional microarray data. Our correlation-based, 
nonparametric approach allows compact representation of class-specific properties with a small number of genes. We evaluated our method using 
publicly available experimental data and obtained favorable results. 
 
Keywords: gene expression microarray, feature selection, classification, clustering 
 
Background: 
Recently feature selection has become an essential process to handle 
the high dimensional nature of biological data such as gene expression 
microarrays. The main objective of feature selection, in particular for 
the gene expression data analysis, is to identify a subset of features 
without deforming the original representation or distorting the 
interpretability [1]. This allows the subset to retain sufficient 
information in explaining the underlying biological system behaviour 
like cellular function and pathways [2]. Therefore, feature selection 
differs from other conventional dimension reduction techniques such 
as the projection-based principle component analysis or the 
information measure-based approaches, which in general do not 
provide a way to recover the original biological meaning from the 
reduced features [1]. In summary, the gene expression data are 
characterized by the following issues: 1) obviously microarrays are of 
high dimension, with thousands of genes involved, 2) measured 
samples or experiments are very few, typically less than 100, and 3) 
among thousands of gene expressions, only a few of them account for 
the data variation [3]. 
 
A lot of data mining and pattern recognition techniques have been 
applied to capture the meaningful patterns in gene expression 
microarrays. A straightforward approach is to apply standard statistical 
methods: using the t-test [4], the Bayesian approach [5], and the 
Wilcoxon rank sum test [6]. All these methods are the univariate 
feature selection method which ignores the dependency between 
features. To take into account the correlation between genes, 
multivariate models have been developed including exploring bivariate 
interactions, correlation-based feature selection, the Markov blanket 
filter method. These filter-based approaches focus only on the general 
properties of the data itself without considering the associated 
classifier in evaluating the selected features. The wrapper approach, on 
the other hand, integrates the feature selection process with the 
evaluation of the selected features by a classifier.  
 
In the machine learning world, it is well known that 
classification/clustering performance could be degraded when the 
selected features include irrelevant and redundant information [7]. 
Redundancy-removed feature subset allows avoiding overfitting and 
hence improves the performance of the applied model [1]. Microarray 
data presumably also include some gene expressions that are not 
related to the classification task at hand. In the past, feature subset 
selection has been extensively studied [1, 8, 9, 10]. Two key issues 
concerning feature subset selection are 1) how to evaluate selected 
features and 2) how to perform search, except determining the starting 

and stopping conditions. 
 
Feature evaluation methods are further divided into groups based on 
modeling strategies, namely filter, wrapper, and embedded techniques 
[1]. Filter techniques compute statistical correlations between gene 
expressions and sample classes. Selection of genes is computationally 
simple and fast to implement, easily scalable to high-dimensional data, 
and independent of classification algorithm. Filter techniques in 
general, however, evaluate the features one by one to determine their 
relevance to the classification task. As a result, they can not provide 
correlative information between two sets of gene expression, which 
would be valuable in selecting a biologically meaningful subset of 
genes. Wrapper methods integrate the feature search procedure with 
the classifier training in such a way that evaluation of feature subset is 
performed in accordance with classifier testing. This interaction 
between feature selection and classifier design enables to consider 
feature dependencies [11]. In the context of finding maximally 
influencing genes from microarray data, though taking different 
strategies, all feature subset selection methods are concerned with 
handling the following issues: (1) Removal of irrelevancy; (2)  
Removal of redundancy; (3) Maintaining of class-discriminating 
power. 
 
In this paper we present a simple, yet efficient feature selection 
framework which is appropriate to extract class-specific properties as a 
small number of genes from two-dimensional microarray data. Our 
feature selection method addresses the key issue in feature selection: 
removal of irrelevance and redundancy without performance 
degradation. The main contribution of our approach, however, lies in 
providing a way to identify what features (gene expressions and 
samples) characterize each class. This is somewhat different from just 
identifying the sample phenotypes in different classes, in the sense that 
we consider the genes and samples at the same time in selecting the 
most influential genes. In other words, the class-specific features retain 
the original matrix form, and hence it is easy to see which genes are 
related with which samples in each class. Another advantageous point 
is that our method can be implemented without great effort. 
 
In spite of its simple process, however, our method allows the 
interpretable process of gene selection as well as superior performance 
in classification. Simulation with the widely used benchmark 
microarray data shows that our method yield compact representation 
of gene expressions (less than 100 out of thousands) while the results 
are favourably compared with the published results [3, 12].   
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Figure 1: A feature subset selection algorithm that is specifically targeted for 2-D microarray data. 
 
Methodology:  
See supplemenatary material for methdology. 
 
Discussion:  
We tested the feature selection method using the publicly available 
data of three different cancer types: acute leukemia, medulloblastoma, 
central nervous system tumors [12]. All simulations were carried out 
using MATLAB® software on a 2.80GHz Petium-4 workstation. To 
verify the effectiveness of the proposed approach, we compare the 
experimental results with those obtained by the basic NMF [13] and 
those by the sparse NMF [5]. We measured the accuracy of the 
clustering by the formula given in equaltion 7 (see supplementary 
material). Note that our goal here is not just to apply a black box-type 
classifier aiming for a good result without reasoning but to find how 
well samples are grouped into compactly formed clusters, which 
would be useful for further analysis. The details of the experiments 
over each data set are  as follows. 
 
Leukemia dataset  
This data set is widely used as a benchmark in the cancer classification 
to compare various methods [12]. The classification task with this data 
set is to discriminate acute lymphoblastic leukemia (ALL) type from 
acute myelogenous leukemia (AML) type, and, within the ALL type, 
to classify ALL-T cell subtype from ALL-B subtype. The data set is 
composed of 5000 genes from 38 bone marrow samples: 19 samples of 
ALL- B type, 8 samples of ALL-T type, and 11 samples of AML type. 
Thus, this data set poses two classification problems: 1) distinction of 
AML and ALL types and 2) distinction of all subtypes of AML, ALL-
B, and ALL-T. The first problem can be relatively easily addressed by 
using SOM or hierarchical clustering (HC), though some kind of 
tuning of parameters (such as number of clusters and number of input 
genes) is required to get optimal solutions [3, 12]. For the second 
problem, however, distribution of samples seemingly does not form 
compact and distinct clusters. Rather, depending on the used metric 
and inputs (for HC) or the starting condition (for SOM), these methods 
yield varying and unstable classification results. Brunet et al. [12] 
reported that basic NMF recovered successfully the cluster structure 

intrinsic to the data for both problems. Later Gao and Church [3] 
presented the sparse NMF (SNMF) and reportedly improved the 
classification accuracy, measured by Equation (7), from 0.947 (2 
incorrectly classified out of 38) using basic NMF to 0.974 (1 incorrect 
out of 38) using SNMF. Our goal here is first to identify most 
influencing subset of genes from leukemia data in such a way that they 
retain the class- specific features while discarding irrelevant gene 
features, and then to show that performance can be improved or 
favorable compared to the results above. Recall that the NMF 
algorithm decomposes the gene expression data, C(N’,M), into V H 
where H has dimension of κ ×M, where κ clusters of samples are 
formed. Utilizing this property, we can see if each sample is correctly 
classified into well-defined clusters by examining the maximum value 
in each column of H. More specifically, if a sample belongs to class w 
and has the max value at column w, then it is correctly classified, and 
otherwise not. Using the feature selection method described in Method 
section, we have selected 64 genes. The class-specific feature selection 
criteria as described at step 7 of Algorithm in Figure 1 are set to as 
follows: F1(·) > 23, F2(·) > 26, and F3(·) > 26. The results of 50 runs 
of the NMF algorithm with κ set to 3 consistently show that all the 
samples except one have been correctly classified. The incorrectly 
recognized sample is the 29th sample annotated as “AML 13” in the 
original data set, which is classified as ALL-B type. This result is 
similar to that of Gao and Church [3], but somewhat different from the 
result of Brunet et al. [12] in which two incorrectly recognized 
samples are the 6-th and the 10-th, both of type ALL-B. Investigating 
the source from which this discrepancy comes seems to be an 
interesting, but challenging task for the future work. 
 
Medulloblastoma dataset 
The medulloblastoma data set contains 34 samples related to 
childhood brain tumors. Although pathogenesis of medulloblastoma is 
not well understood and its diagnosis is highly subjective, due to some 
attributes observable under the microscope, medulloblastoma could be 
divided into two sub-classes, classic and desmoplastic [12, 16]. The 
samples are composed of 25 classic and 9 desmoplastic 
medulloblastoma. SOM and HC can not recognize the clustering 
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topology intrinsic to this two-class data. The basic NMF successfully 
captured the distinctiveness between two classes for κ = 2 to 5, but two 
desmoplastic and one classic sample are incorrectly classified. When 
the SNMF was applied to this data set, though it captured the intrinsic 
clustering structure, classification performance was not satisfactory: 
only three out of nine desmoplastic samples were correctly classified. 
Considering that SNMF seeks sparse representation of genes, which is 
equivalent to the objective of our approach by and large, comparison 
of our method's performance against that of SNMF would be 
meaningful. However, comprehensive comparison is difficult because 
Gao and Church [3] only described the outline of the SNMF algorithm 
and the implication of sparseness, without providing any information 
about the degree of data sparseness used (or how compactly the data 
are reduced). Using the feature selection method, we have selected 74 
genes out of 5893 in the data set. In this case, the class-specific feature 
selection criteria specified at step 7 of Algorithm are set to as follows: 
F1(·) > 14 and F2(·) > 10. These values are a little bit smaller 
compared to those in the leukemia data case. By varying the value of κ 
from 2 to 5, we carried out several tests and observed the following 
results. For κ = 2, the experiment consistently yielded three incorrectly 
classified sample, all belonging to classic medulloblastoma. For κ = 3, 
the experiment also yielded three incorrectly classified sample, two 
from classic and one from desmoplastic medulloblastoma. For κ = 4 
and 5, only one classic medulloblastoma, the 6-th sample annotated as 
“Brain MD 49”, was incorrectly classified. This sample was 
consistently misclassified across all the experiments. These results, 
compared with others above, are very suggestive of our method's 
effectiveness in feature selection. 
 
Central Nervous System Tumors Data 
The data set is composed of 34 samples of central nervous system 
embryonal tumors [16]. The samples come from four different types: 
10 classic medulloblastomas, 10 malignant gliomas, 10 rhabdoids, and 
4 normals. The basic NMF method well captured four-class clustering 
structure with two misclassifications: the 18-th sample (“Brain Rhab 
10”) of glioma type as a rhabdoids and the 30-th sample (“Brain 
MGlio 8”) as normal. The SNMF algorithm showed similar results 
with only one (the 18-th) sample misclassified as a rhabdoid. We have 
selected 97 genes out of 7129 in the data set. The class-specific feature 
selection criteria are set to as follows: F1(·) > 24, F2(·) > 23, F3(·) > 
22, and F4(·) > 24. We applied the basic NMF to this set, getting one 
misclassification for the 18-th sample. We note that the 18-th sample is 
persistently misclassified as a rhabdoid across all the three methods. 
 
Class-Specific Features 
In our feature selection method, the features that are specific to class w 
is saved in Fw(N,M) as described at step5 of Algorithm in Figure 1. 
Fw(N,M) is a binary-valued matrix in which values of 1 refers to 
feature components distinguished for class w. Therefore, for any two 
different classes w1 and w2, the lesser common entries of value 1 Fw1 
(N,M) and Fw2 (N,M) have, the better discrimination between w1 and 
w2 we expect. Table 2 (see supplementary material) shows that the 
feature matrices obtained from the leukemia data share few common 
elements of value 1. Fw denotes the number of 1-valued elements in 
Fw(N,M), and Fi – Fj donotes the number of elements that have 1 for 
both Fi(N,M) and Fj(N,M), and so on. In Table 1 (see supplementary 
material), one can see that 1-valued elements that are commonly 
occurred for any two classes are on the average about 10% of the total 
number of 1-valued elements. This clearly explains why our method is 
effective in capturing class-specific features. For the case of 
medulloblastoma data, the features of two classes are more 
uncorrelated as shown in Table 2 (see supplementary material). Only 
72 out of over 20,000 elements are marked as common. Table 3 (see 
supplementary material) shows the statistics for the central nervous 

system tumors data, where “Avg.” refers to the average value of four 
Fw(N,M)’s. Three-class common membership statistics show similar 
behavior (10% on the average) as other data sets above, except for the 
F2 – F3 – F4 case where the number of common elements is 
remarkably small. This explains that the three classes are expectedly 
well separated from each other. 
 
Conclusion: 
We present a feature subset selection framework that is effective in 
selecting a subset of influencing genes from microarray data. The 
proposed method provides an explicit representation of class-specific 
features. This scheme will be useful to identify biologically 
meaningful genes associated with a certain diagnosis. Our approach is 
distinct from typical dimension reduction methods that do not consider 
preserving the unit property of individual features in the reduced 
representation.  Typical dimension reduction of microarray data is 
carried out either by reducing only the number of rows (gene 
expression levels) or by creating new reduced dimensions without 
considering the unity of original features, such as employed by PCA. 
In this work, we approached row-wise dimension reduction by using 
feature selection technique, while applying the clustering technique for 
column-wise reduction. One point to note about this work and most 
other existing works is that the dimension reduction in row-wise and 
column-wise direction is not coordinated with each other. The next 
step of our work will be directed to the coordination scheme in which 
selection of genes is well coordinated with identification of sample 
phenotypes characterizing each class based on the selected genes. 
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Supplementary Material: 
___________________________________________________________________________________________________________________ 
Methdology : 
Feature Selection: 
Overall algorithmic steps of our feature subset selection method are illustrated in Figure 1. We denote as C(N,M) a microarray data in a matrix 
form of N gene expression levels and M samples of experiment conditions. Let Ci(N, 1) denote i-th column vector of C(N,M). Referring to Figure 
1, the details of the feature selection steps are as follows. 
 
Step 1: First, column vectors Ci(N, 1), i = 1, 2,…, M, are created from C(N,M). Each of these column vectors actually corresponds to one sample 
of gene expression data. Each column vector Ci(N, 1) is fed into a difference operation (denoted as ○- ) which computes the element-wise 
difference between Ci(N, 1) and all the columns of C(N,M). For each i, this operation outputs a difference matrix,  
 
Di(N,M) = C(N,M) ○-  Ci(N, 1),  i = 1,2,..., M,                    (1) 
 
where each entry of Di(N;M) is computed as the difference between two real numbers, 
 
Di(r, c) = C(r, c) − Ci(r, 1),  r = 1,2,…,N,  c = 1,2,…,M.                 (2) 
    
Let D(N, j) denote j-th column of matrix D(N,M). By definition, Di(N, j) contains the measure about how i-th sample Ci(N, 1) differs from j-th 
sample Cj(N, 1). One advantage of this vector-based scheme is that between-gene difference information is also kept in the column vectors 
together with between-sample differences. This is useful in examining how all the genes are correlated as will be shown shortly. 
 
Step 2: Magnitude of elements of Di(N,M) can be used as a measure to determine how useful each gene (row) is in classification. Our strategy 
here is based on a simple idea: differences between two samples in the same class will be small for most genes, while two samples coming from 
different classes will show large differences for many genes. Our objective is to identify and select out those genes that behave according to the 
conjecture. In order to mark the genes which take big or small values in Di(N,M), we introduce upper threshold u and lower threshold l, which are 
set to 75-percentile and 25-percentile, respectively, of the values in Di(N,M). As the range of difference values could be varying depending on 
class, thresholds are determined using the values within a class and represented as uw and lw for class w.   
 
Step 3: Marking of the values in Di(N,M) is carried out as follows. For an element Di(n,m) given, if i-th sample and m-th sample belong to the 
same class, then the absolute value of Di(n,m) would be expectedly small for gene n. Otherwise if they belong to different classes, then Di(n,m) 
would take a large value for gene n. In any case, if this expectation is met for gene n, we mark the gene by setting Ii(n,m) to 1. This marking 
implies that n-th gene is useful for describing the (inverse) correlation between i-th to m-th sample in terms of classification. Also it should be 
noted that this naturally provides hints about where irrelevant features arise. However, final decision on usefulness of a gene in classification 
should be postponed until the gene proves to be useful for all the samples involved, which is taken care of in the next step. 
 
Step 4: The objective of this step is to construct class-specific features from a set { Ii(N,M), i = 1,2, … , M}, which holds individual sample-based 
information. As we assume M samples are collected from W different classes, M columns can be decomposed into a partition of W blocks, 
 
Ii(N, M) = Ii(N, M1 + M2 + ... + MW),          (3) 
 
where Mw refers to the number of samples in class w. With this scheme, for each w, we element-wise add Ii(N,M)’s within class w to get Sw(N, M).  
For example, if we suppose M2 consists of 3 samples indexed from 5 to 7, the features specific to class 2 are computed by: 
 
S2(n,m) = I5(n,m) + I6(n,m) + I7(n,m),  n = 1,2,...,N,  m = 1,2,...,M. Once we have constructed all Sw(N,M)’s, we identify the elements taking 
significant values by applying a threshold which is set to 90-percentile of the values in Sw(N,M) for each class w. This threshold operation 
produces a binary matrix Fw(N, M). It should be noted that Fw(N, M) holds a useful measure for determining how much each gene n contributes to 
the classification of each sample m.    
 
Step 5: After we collect the within-class features in Fw(N, M), we then move on to selecting the most influencing genes. Selection of genes at this 
step is rather trivial, because all useful information has already gathered in Fw(N, M). We just count the marked elements in Fw(N, M) for each 
gene n, whose value is denoted by Fw(n), and use it as a final measure to determine the usefulness of gene n in the classification task as described 
in step 6. 
 
Clustering of Samples 
Gene expression data are typically given without any information about the phenotype of genes within each class. In handling such case of 
lacking a priori knowledge of representative patterns, nonnegative matrix factorization (NMF) has proved to be successful in capturing 
biologically meaningful clusters in the unsupervised manner [3, 12, 13]. In contrast to holistic methods such as principle component analysis 
(PCA) and self-organizing map (SOM), NMF yields a sparse, parts-based decomposition of data without discarding the original interpretation of 
features [14]. Suppose gene expression data is represented as N × M nonnegative matrix A which is C(N’, M) after feature selection. The number 
N of genes is usually in the thousands. NMF method decomposes A into two nonnegative matrices, V of size N ×κ and H of size κ ×M, so that A ~ 
V H. The rank κ of factorization defines the number of metagenes, which reflects the degree of latent factors. In a classification scheme, the value 
of κ represents the number of clusters, and the goal of NMF is to find two nonnegative matrices V and H such that · clusters optimally 
characterize the intrinsic structure of samples in A. The NMF algorithm starts by initializing V and H to random values and iteratively updates 
their values to minimize the distance between A and V H. A number of the divergence functionals have been proposed to measure the distance, 
including Euclidian distance and Kullback-Leibler (KL) divergence [12, 13, 14]. The KL divergence functional is given by the Poisson likelihood 
of generating A from V and H,  
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The updates of the two matrices are iteratively performed until the divergence of Equation (4) converges to a (local) minimum. Each sample is 
then considered to determine its membership to one of the κ clusters by the highest value of metagene expression pattern (column of H). 
____________________________________________________________________________________________________________________ 
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where δ(j) is 1 if j-th sample is correctly classified and 0 otherwise.  
_________________________________________________________________________________________________________________ 
 
Table 1: Number of 1-valued elements in Fw(N,M) for the Leukemia data. Fi - Fj denotes the number of elements whose values take 1 both in 
class i and j. Also Fi - Fj - Fk denotes the number of elements that have 1 for all three classes i, j, and k. 
F1 F2 F3 F1 - F2 F1 - F3 F2 - F3 F1 - F2 - F3 
23,115 22,758 24,785 1,640 1,127 4,468 7 
 
Table 2: Number of 1-valued elements in Fw(N,M) for the Medulloblastoma data 
F1 F2 F1 - F2 
22,665 20,913 72 
 
Table 3: Number of 1-valued elements in Fw(N,M) for the Central nervous system tumors data. The value in the first column is the average of 
four Fw’s.  
Avg. of Fw’s F1 - F2 - F3 F1 - F2 – F4 F1 – F3 – F4 F2 – F3 – F4 F1 - F2 - F3- F4 
26,710 3,627 1,829 2,682 210 98 

 


