Computational genome analyses of metabolic enzymes in *Mycobacterium leprae* for drug target identification

Anusuya Shanmugam¹, Jeyakumar Natarajan²*

¹Department of Bioinformatics, VMKV Engineering College, Vinayaka Missions University, Salem; ²Department of Bioinformatics, Bharathiar University, Coimbatore; Jeyakumar Natarajan - Email: n.jeyakumar@yahoo.co.in; *corresponding author.

Received November 04, 2009; accepted March 06, 2010; published March 31, 2010

Abstract:

Leprosy is an infectious disease caused by *Mycobacterium leprae*. *M. leprae* has undergone a major reductive evolution leaving a minimal set of functional genes for survival. It remains non-cultivable. As *M. leprae* develops resistance against most of the drugs, novel drug targets are required in order to design new drugs. As most of the essential genes mediate several biosynthetic and metabolic pathways, the pathway predictions can predict essential genes. We used comparative genome analysis of metabolic enzymes in *M. leprae* and *H. sapiens* using KEGG pathway database and identified 179 non-homologues enzymes. On further comparison of these 179 non-homologous enzymes to the list of minimal set of 48 essential genes required for cell-wall biosynthesis of *M. leprae* reveals eight common enzymes. Interestingly, six of these eight common enzymes map to that of peptidoglycan biosynthesis and they all belong to Mur enzymes. The machinery for peptidoglycan biosynthesis is a rich source of crucial targets for antibacterial chemotherapy and thus targeting these enzymes is a step towards facilitating the search for new antibiotics.

Keywords: Comparative genomics, Mur enzymes, M. leprae, Leprosy.

Background:

The availability of the complete genome sequences of several pathogenic bacteria and the completion of the human genome project has revolutionized the field of drug-discovery against threatening human pathogens [1]. Novel drug targets are required in order to design new drugs against antibiotic sensitive pathogens. In general, a target should provide adequate selectivity yielding a drug which is specific or highly selective against the pathogen with respect to the human host. Moreover, the target should be essential for growth and viability of the pathogen at least under the condition of infection [2]. The search for potential drug targets has increasingly relied on genomic approaches. The entire approach is built on the assumption that the potential target must play an essential role in the pathogen's survival and constitute a critical component in its metabolic pathway. At the same time, this target should not have any well-conserved homolog in the human host. This would preclude the possibilities of unacceptable crossreactivity that might prove detrimental to the host [3]. Leprosy is caused by Mycobacterium leprae, which primarily affects the skin, mucous membranes and peripheral nerves causing deformities. Leprosy remains a major global health problem, especially in the developing world. For over a century leprosy has presented major challenges in the fields of microbiology, pathology, immunology, and genetics; it continues to do so today. Computer analysis demonstrated that only half of the sequence contains protein-coding genes. The other half contains pseudo genes and non-coding sequences. These findings indicate that M. leprae has undergone a major reductive evolution leaving a minimal set of functional genes for survival [4]. Study of the coding region of the sequence provides evidence accounting for the particular pathogenic properties of M. leprae which is an obligate intracellular parasite. Mycobacterium leprae remains non-cultivable [5]. M. leprae had mutational changes in some of their genes like gyrA, rpoB, and folP which developed resistance against drugs like newer quinolones, refampicin and dapsone [6]. Resistant strains of *M. leprae* appeared due to mutations in the macrolide target, the ribosome [7]. These findings suggest the emergence of multi-drug resistant M. leprae. Hence the mycobacterial cell wall with its specific composition and structure is considered to be a major factor in promoting the natural resistance of mycobacteria to various antibiotics. Early detection of Mycobacterium leprae infection is considered an important component of strategies aiming at reducing transmission of infection, but currently available diagnostic tools often lack sufficient sensitivity and specificity to reach this goal [8]. In clinical studies, notable progress has been made concerning the immunology and immunopathology of leprosy, the genetics of human resistance, mechanisms of nerve injury, and chemotherapy. In nearly all of these areas, however, leprosy remains poorly understood compared to other major bacterial diseases [9]. Here, we

present a computational approach to identify the genes essential to *M. leprae* using comparative pathway analysis followed by mapping of non-homologues genes with list of minimal set of essential genes required for cell-wall biosynthesis of *M. leprae*. In addition, our approach successfully identified a unique group of common enzymes as promising protein targets for new antibiotic development and further characterization in the laboratory.

Methodology:

Collection of metabolic pathway enzymes of *M. leprae*

Kyoto Encyclopedia of Genes and Genomes (KEGG) [10] is a collection of online databases dealing with genomes, enzymatic pathways, and biological chemicals. KEGG maintains five main databases. They are KEGG Atlas, KEGG Pathway, KEGG Genes, KEGG Ligand and KEGG BRITE. First, we collected all the metabolic pathways of M. leprae and H. sapiens from KEGG pathway database. Each of the pathways of M. leprae was compared with all the available pathways of *H. sapiens* to identify whether that particular pathway of M. leprae is present in H. sapiens or not. The pathways which were present in both M. leprae and H. sapiens were separated out and were named as shared pathways. The pathways which were present only in M. leprae but were not present in H. sapiens were grouped together and were called as unique pathways. The gene name and the enzyme commission number (EC) of all the enzymes present in both shared and unique pathways were identified and collected from KEGG Genes database.

Retrieval of protein sequences and BLAST

The protein sequence of all enzymes in both shared and unique pathways of *m. leprae* were retrieved from UNIPROT [11] in FASTA format. Each protein sequence was subjected to BLASTP analysis against the *H. sapiens* at an E-value cutoff of 10^{-4} [12]. BLAST results with no hits with *H. sapiens* were identified as non-homologues enzymes of *M. lepare*.

Identification of essential Enzymes

The minimal set of essential genes required for cell envelope biosynthesis of *m. leprae* was reported previously using comparative genome sequence method by Vissa and Brennan [13]. The *M. leprae* enzymes which were non homologous to *H. sapiens* were mapped with the gene list of Vissa & Brennan and the most common *M. leprae* genes were identified and further explored.

Results and discussion:

Metabolic pathway information

In KEGG pathway database we found 99 metabolic pathways for *M. leprae* and 210 metabolic pathways for *H. sapiens*. Out of 99 metabolic pathways for *M. leprae* five pathways are unique to *M. leprae* alone and comprised of 29 enzymes and remaining 94

ISSN 0973-2063 (online) 0973-8894 (print) Bioinformation 4(9): 392-395 (2010)

Bioinformation

www.bioinformation.net

material).

pathways are present in *H. sapiens* as well and comprised of 731 D-al enzymes. The five unique pathways of *m. leprae*, 29 enzymes specific to these pathways and their corresponding gene id and the EC number were represented **Table 1** (see supplementary asso

Prediction of enzymes which were non homologous to human

Removing enzymes from the pathogen that share a similarity with the host protein ensures that the targets have nothing in common with the host proteins and thereby, eliminating undesired host protein-drug interactions. BLASTP similarity search of all these 760 (29 unique + 731 shared) enzymes at an *E*-value cutoff of 10^4 resulted 179 non-homologues enzymes of *m. leprae* of which ten enzymes from the unique pathways and the remaining 169 belong to enzymes from shared pathways. All these 179 enzymes with their corresponding gene-id and EC number were represented in **Table 2** (see supplementary material).

Comparison of non-homologues enzymes with essential gene set

The 179 (10 + 169) non-homologues enzymes were further compared to the minimal set of 48 essential genes required for cellwall biosynthesis of *M. leprae* and reported by Vissa and Brennan **[13]**. There are eight enzymes common in both data sets (**Table 3 in supplementary material**). Among the eight common enzymes only one enzyme was found to be present in unique pathway and the remaining seven enzymes were found to be present in shared pathways. All these eight enzymes were categorized as essential enzymes of *m. leprae*.

Role of essential enzymes of *M. leprae*

All the eight essential enzymes were further analyzed for the identification of potential drug targets. One of the eight essential enzymes Alanine racemase (alr) is the enzyme found in D-Alanine metabolism which is a unique pathway of *M. leprae*. It is also found in Alanine and Aspartate metabolism which is a shared pathway of *M. leprae*. Another essential enzyme Putative dTDP-4-dehydrorhamnose 3, 5-epimerase (rmIC) was found to be essential for Nucleotide sugar metabolism which is a shared pathway of *M. leprae*. It was also found to be essential for polyketide sugar unit biosynthesis which is a unique pathway of *M. leprae*. The remaining 6 essential enzymes murC, murD, murE, murG and murY were found to be essential for Peptidoglycan biosynthesis. It is noteworthy that all these 6 enzymes belong to the same family. This particular pathway, peptidoglycan biosynthesis was analyzed for the prediction of drug targets.

Peptidoglycan biosynthesis and Mur enzymes

M. leprae posses a multilayered cell envelope which basically consisted of, from inner to outer layer, a plasma membrane (PM), a peptidoglycan layer (PG), an electron translucent layer (ETL), and an irregular electron dense outer layer (OL) [14]. This bacterial cell envelope provides strength and rigidity to counteract internal osmotic pressure, and protection against the environment. The peptidoglycan layer gives the cell wall its strength, and helps to maintain the overall shape of the cell. The basic peptidoglycan structure of both Gram-positive and Gram-negative bacteria is comprised of a sheet of glycan chains connected by short crosslinking polypeptides. Biosynthesis of peptidoglycan is a multi-step process comprising three main stages: (1) Formation of UDP-Nacetylmuramic acid (UDPMurNAc) from N-acetylglucosamine (GlcNAc). (2) Addition of a short polypeptide chain to the UDPMurNAc. (3) Addition of a second N-acetylglucosamine (GlcNAc) to the disaccharide-pentapeptide building block and transport of this unit through the cytoplasmic membrane and incorporation into the growing peptidoglycan layer.

The second step of the petidoglycan biosynthesis was carried out by four of the mur ligase enzymes MurC, MurD, MurE and MurF. These four Mur ligases are responsible for the successive additions of L-alanine, D-glutamate, meso-diaminopimelate or L-lysine, and D-alanyl-D-alanine to UDP-N-acetylmuramic acid. The final step in the formation of peptidoglycan was carried out by murG enzyme (N-acetyl glucosaminyl transferase). This enzyme is peripherally associated with the inner face of the cytoplasmic membrane. Therefore, the peptidoglycan subunit is completely assembled before it traverses the cytoplasmic membrane. Phospho-Nacetylmuramoyl-pentapeptide-transferase (mraY) is an important enzyme in murcin synthesis. It is responsible for the formation of the first lipid intermediate of the cell wall peptidoglycan synthesis [15]. As the layer of the bacterial cell wall that confers strength is the peptidoglycan meshwork if we target murC, murD, murE and murF which catalyze the addition of a short polypeptide chain to the UDP-N-acetylmuramic acid (UDPMurNAc), we can easily prevent the synthesis of bacterial cell wall. Thus, these are excellent candidates for further exploration.

Conclusion:

The availability of full genome sequences and computer-aided analysis to identify probable antimicrobial drug targets has become a new trend in pharmacogenomics. The use of a comprehensive set of unique pathways and enzymes present in these pathways of M. leprae to identify new drug targets were documented in this study. We have found peptidoglycan biosynthetic pathway and the six mur enzymes (murC, murD, murE, murF, murG and murY) involved in this pathway to be used as potential drug targets. Protein structure and inhibitors of these important enzymes are not currently available. Further analysis on the structural studies on these mur enzymes is believed to provide valuable insights towards the design of an inhibitor specific to the peptidoglycan biosynthesis of M. leprae for the treatment of leprosy. The availability of the newer anti-leprotic drugs in the future would definitely support our present findings such that there would be a possibility of mur enzymes which were proposed by us for targeting M. leprae.

Acknowledgment:

We would like to acknowledge Dr. R. Ravishankar and Dr. S. Sivamani for critical reading of the manuscript and for helpful discussions.

References:

- [1] L Miesel et al., Nat. Rev. Genet. (2003) 4: 442 [PMID:12776214]
- [2] MK Sakharkar *et al.*, *In Silico Biol.* (2004) **4:** 0028 [PMID:15724285]
- [3] B Frtiz, GA Raczniak, *BioDrugs.* (2002) **16:** 331 [PMID:12408737]
- [4] N Honore, *Med Trop (Mars)* (2002) **62:** 473 [PMID:12616936]
- [5] DM Scollard *et al., Clin Microbiol Rev* (2006) **19:** 338 [PMID:16614253]
- [6] S Maeda, Antimicrob Agents Chemother. (2001) **45:** 3635 [PMID:11709358]
- [7] F Doucet-Populaire *et al.*, *Curr Drug Targets infect Disord* 2002 Dec; 2(4): 355-70 [PMID:12570741]
- [8] A Geluk et al., Infect Immun. 2005 Sep; 73(9): 5636-44 [PMID:16113281]
- [9] DM Scollard et al., Clin Microbiol Rev. 2006 Apr; 19(2): 338-81 [PMID:16614253]
- [10] http:// www.genome.jp/kegg.html
- [11] http:// www.uniprot.org/
- [12] Altschul et al., Nucleic Acids Res. 1997 Sep, 1:25(17): 3389-
- 3402 [PMID:9254694] [13] VD Varalakshmi, PJ Brennan, *Genome Biology* (2001)
- 2(8):Reviews1023 [PMID: 11532219] [14] AI Takade *et al., Microbiol Immun.* (2003) 47(4): 265-70 [PMID:12801063]
- [15] http://www.ebi.ac.uk/interpro

Edited by P. Kangueane

Citation: Shanmugam & Natarajan, Bioinformation 4(9): 392-395 (2010)

License statement: This is an open-access article, which permits unrestricted use, distribution, and reproduction in any medium, for noncommercial purposes, provided the original author and source are credited. www.bioinformation.net

Supplementary material:

S. NoName of the PathwayEnzymeEC #1. D-Alanine metabolism1D-Alanyl-alanine synthetase ADdl6.3.2.42Alanine racemaseAlr5.1.1.12. Ethylbenzene degradation3Acetyl-CoA acyltransferasefadA2.3.1.63. Acetyl-CoA acyltransferasefadA2.3.1.62.3.1.73. Benzoate degradation via CoA ligation5Monooxygenase1.14.135. Monooxygenase1.14.132.7.17. AmidaseamiE3.5.1.48. Antigen 85-AfbpA2.3.19. Putative acyl-CoA synthetasefadD326.2.110. Enoyl-CoA hydrataseechA14.2.1.1711. Acetyl-CoA acetyltransferasefadA42.3.1.912. Succinate dehydrogenase iron-sulfur subunitsdhB1.3.99.14. 1,1.1-Trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) degradation1.3.113. Trans-acting enoyl reductase1.3.114. Putative oxidoreductase1.3.115. Acetyl-CoA acetyltransferaseA to B2.3.1.916. cytochrome c oxidase subunit XV assembly protein (A)CtaA17. Glutamine synthetaseGlnA6.3.1.218. Putative two-component response regulatorMtrA21. Putative two-component response regulatorMtrA22. Putative two-component response regulatorMtrA23. Two-component response regulatorMtrA24. Putative two-component response regulatorMtrA25. Two-component response regulatorMtrA26. Tryptophan s	Table 1: The five unique pathways and 29 enzymes specific to these pathways of m. leprae							
1. D-Alanine metabolismDdl $6.3.2.4$ 1D-Alanyl-alanine synthetase ADdl $6.3.2.4$ 2Alarine racemaseAlr $5.1.1.1$ 2. Ethylbenzene degradation $alar5.1.1.13Acetyl-CoA acyltransferasefadA2.3.1.64MycolytransferasefbpA2.3.1.73. Benzoate degradation via CoA ligation7.1.75Monoxygenase1.14.13.76Hypothetical protein2.7.1.77AmidaseamiE8Antigen 85-AfbpA9Putative acyl-CoA synthetasefadD3210Enoyl-CoA hydrataseechA111Acetyl-CoA acetyltransferasefadA42.3.1.9Succinate dehydrogenase iron-sulfur subunitsdhB13Trans-acting enoyl reductase1.3.1114Putative oxidoreductase1.255. Two component system1515Acetyl-CoA acetyltransferaseA to B16cytochrome c oxidase subunit XV assembly protein (A)CtaA17Glutamine synthetaseGlnA6.3.1.218Putative two-component response regulatorMtrA21Putative two-component system sensor histidine kinaseMtrB2.7.13.320Putative two-component system sensor histidine kinaseMtrB2.7.13.321Putative two-component system sensor histidine kinaseMtrB2.7.13.322Putative two-component system sensor histidine kinaseMtrB2.7.13.3$	S. No	Name of the Pathway	Enzyme	EC #				
1D-Alanyl-alanine synthetase ADdl $6.3.2.4$ 2Alanine racemaseAlr $5.1.1.1$ 2. Ethylbenzen degradation3Acetyl-CoA acyltransferasefadA $2.3.1.6$ 3Acetyl-CoA acyltransferasefbpA $2.3.1.6$ 4MycolytransferasefbpA $2.3.1.6$ 5Monooxygenase1.14.136Hypothetical protein $2.7.1$ 7AmidaseamiE $3.5.1.4$ 8Antigen 85-AfbpA $2.3.1$ 9Putative acyl-CoA synthetasefadD32 $6.2.1$ 10Enoyl-CoA hydrataseechA1 $4.2.1.17$ 11Acetyl-CoA acetyltransferasefadA4 $2.3.1.9$ 12Succinate dehydrogenase iron-sulfur subunitsdhB $1.3.99.1$ 4.1,1,1-Trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) degradation13Trans-acting enoyl reductase13Trans-acting enoyl reductase $1.3.1$ 14Putative oxidoreductase 1.2 5. Two component system15Acetyl-CoA acetyltransferase15Acetyl-CoA acetyltransferaseGlnA17Glutamine synthetaseGlnA18Putative two-component response regulatorMtrA21Putative two-component system sensor histidine kinaseMtrB22Putative two-component system sensor histidine kinaseMtrB23Two-component response regulatorPtrA24Sensor histidine kinasePtrB $2.7.13.3$ 25Tryptophan synthase subu	1. D-Al	anine metabolism						
2Alarine racemaseAlr5.1.1.12. Ethylbenzene degradation3Acetyl-CoA acyltransferasefadA2.3.1.63Acetyl-CoA acyltransferasefbpA2.3.13. Benzoate degradation via CoA ligation5Monooxygenase1.14.136Hypothetical protein2.7.17AmidaseamiE3.5.1.48Antigen 85-AfbpA2.3.19Putative acyl-CoA synthetasefadD326.2.110Enoyl-CoA hydrataseechA14.2.1.1711Acetyl-CoA acetyltransferasefadA42.3.1.912Succinate dehydrogenase iron-sulfur subunitsdhB1.3.99.14. 1,1.1-Trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) degradation13.113Trans-acting enoyl reductase1.25. Two component system15Acetyl-CoA acetyltransferaseA to B2.3.1.916cytochrome c oxidase subunit XV assembly protein (A)CtaA2.7.1.320Putative two-component response regulatorMprA2.7.13.320Putative two-component system sensor histidine kinaseMprB2.7.13.321Putative two-component system sensor histidine kinaseMtrB2.7.1.322Putative serine proteasePepD3.4.2131TrapA4.2.1.202.7.13.332Putative serine proteasePerD3.4.2143Tryptophan synthase subunit alphaTrpA4.2.1.2044Sensor histidine kinaseMt	1	D-Alanyl-alanine synthetase A	Ddl	6.3.2.4				
2. Ethylbenzene degradation3Acetyl-CoA acyltransferasefadA2.3.1.64MycolytransferasefbpA2.3.13. Benzoate degradation via CoA ligation	2	Alanine racemase	Alr	5.1.1.1				
3Acetyl-CoA acyltransferasefadA2.3.1.164MycolytransferasefbpA2.3.13. Benzoate degradation via CoA ligation5Monooxygenase1.14.135MonooxygenaseamiE3.5.1.46Hypothetical protein2.7.17AmidaseamiE3.5.1.48Antigen 85-AfbpA2.3.19Putative acyl-CoA synthetasefadD326.2.110Encyl-CoA acetyltransferasefadA42.3.1.912Succinate dehydrogenase iron-sulfur subunitsdhB1.3.99.14. 1,1,1-Trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) degradation13Trans-acting encyl reductase13Trans-acting encyl reductase1.25. Two component system132.3.1.916cytochrome c oxidase subunit XV assembly protein (A)CtaA17Glutamine synthetaseGlnA6.3.1.218Putative two-component response regulatorMtrA21Putative two-component system sensor histidine kinaseMtrB2.7.13.322Putative two-component system sensor histidine kinaseMtrA21Putative serine proteasePepD3.4.2123Two-component system sensor histidine kinaseMtrA24Sensor histidine kinasePrrB2.7.13.325Tryptophan synthase subunit alphaTrpA4.2.1.2026Tryptophan synthase subunit alphaTrpB4.2.1.2027Indole-3-glycerol-phosphate synthase	2. Ethy	Ibenzene degradation						
4MycolytransferasefbpA2.3.13. Benzoate degradation via CoA ligation5Monooxygenase1.14.136Hypothetical protein2.7.17AmidaseamiE3.5.1.48Antigen 85-AfbpA2.3.19Putative acyl-CoA synthetasefadD326.2.110Enoyl-CoA hydrataseechA14.2.1.1711Acetyl-CoA acetyltransferasefadA42.3.1.912Succinate dehydrogenase iron-sulfur subunitsdhB1.3.99.113Trans-acting enoyl reductase1.3.114Putative oxidoreductase1.25. Two component system1.215Acetyl-CoA acetyltransferaseA to B2.3.1.916cytochrome c oxidase subunit XV assembly protein (A)CtaA17Glutamine synthetaseGlnA6.3.1.218Putative two-component response regulatorMprA19Putative two-component system sensor histidine kinaseMprB2.7.13.320Putative two-component system sensor histidine kinaseMtrB2.7.13.321Putative two-component system sensor histidine kinasePepD3.4.2123Two-component system sensor histidine kinasePtrA24Sensor histidine kinasePtrA2.1.2025Tryptophan synthase subunit alphaTrpA4.2.1.2026Tryptophan synthase subunit alphaTrpB4.2.1.2027Indole-3-glycerol-phosphate synthaseTrpD	3	Acetyl-CoA acyltransferase	fadA	2.3.1.16				
3. Benzoate degradation via CoA ligation 5 Monooxygenase 1.14.13 6 Hypothetical protein 2.7.1 7 Amidase amiE 3.5.1.4 8 Antigen 85-A fbpA 2.3.1 9 Putative acyl-CoA synthetase fadD32 6.2.1 10 Enoyl-CoA hydratase echA1 4.2.1.17 11 Acetyl-CoA acetyltransferase fadA4 2.3.1.9 12 Succinate dehydrogenase iron-sulfur subunit sdhB 1.3.99.1 4. 1,1,1-Trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) degradation 13.1 13 Trans-acting enoyl reductase 1.2 5. Two component system 15 Acetyl-CoA acetyltransferase A to B 2.3.1.9 16 cytochrome c oxidase subunit XV assembly protein (A) CtaA 17 Glutamine synthetase GlnA 6.3.1.2 18 Putative two-component response regulator MtrA 21 Putative two-component system sensor histidine kinase MtrB 2.7.13.3 20 Putative two-component system sensor histidine kinase MtrB 2.7.13.3 22 Putative esc	4	Mycolytransferase	fbpA	2.3.1				
5Monooxygenase1.14.136Hypothetical protein2.7.17AmidaseamiE8Antigen 85-AfbpA9Putative acyl-CoA synthetasefadD3210Enoyl-CoA hydrataseechA14.2.1.171111Acetyl-CoA acetyltransferasefadA42.3.1.91212Succinate dehydrogenase iron-sulfur subunitsdhB13Trans-acting enoyl reductase1.3.114Putative oxidoreductase1.25.Two component system1.215Acetyl-CoA acetyltransferaseA to B16cytochrome c oxidase subunit XV assembly protein (A)CtaA17Glutamine synthetaseGlnA18Putative two-component response regulatorMprA19Putative two-component response regulatorMtrA21Putative two-component system sensor histidine kinaseMtrB22Putative two-component response regulatorMtrA21Putative two-component system sensor histidine kinaseMtrB22Putative two-component system sensor histidine kinaseMtrB23Two-component response regulatorPtrA24Sensor histidine kinasePtrB25Tryptophan synthase subunit alphaTrpA26Tryptophan synthase subunit alphaTrpA27Indole-3-glycerol-phosphate synthaseTrpD28Anthranilate phosphoribosyl transferaseTrpD29Anthranilate synt	3. Benz	zoate degradation via CoA ligation						
6Hypothetical protein $2.7.1.$ 7AmidaseamiE $3.5.1.4$ 8Antigen 85-AfbpA $2.3.1.$ 9Putative acyl-CoA synthetasefadD32 $6.2.1.$ 10Enoyl-CoA hydrataseechA1 $4.2.1.17$ 11Acetyl-CoA acetyltransferasefadA4 $2.3.1.9$ 12Succinate dehydrogenase iron-sulfur subunitsdhB $1.3.99.1$ 4. 1,1,1-Trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) degradation13Trans-acting enoyl reductase $1.3.11$ 13Trans-acting enoyl reductase 1.2 5.Two component system1215Acetyl-CoA acetyltransferaseA to B $2.3.1.9$ 16cytochrome c oxidase subunit XV assembly protein (A)CtaA17Glutamine synthetaseGlnA $6.3.1.2$ 18Putative two-component response regulatorMprA19Putative two-component response regulatorMtrA21Putative two-component system sensor histidine kinaseMprB $2.7.13.3$ 22Putative two-component system sensor histidine kinaseMtrB $2.7.13.3$ 23Two-component response regulatorPtrrA24Sensor histidine kinasePtrrB $2.7.13.3$ 25Tryptophan synthase subunit alphaTrpA $4.2.1.20$ 26Tryptophan synthase subunit betaTrpB $4.2.1.20$ 27Indole-3-glycerol-phosphate synthaseTrpD $2.4.2.18$ 28Anthranilate phosphoribosyl transferaseTrpD $2.4.2.18$ <	5	Monooxygenase		1.14.13				
7AmidaseamiE3.5.1.48Antigen 85-AfbpA2.3.19Putative acyl-CoA synthetasefadD326.2.110Enoyl-CoA hydrataseechA14.2.1.1711Acetyl-CoA acetyltransferasefadA42.3.1.912Succinate dehydrogenase iron-sulfur subunitsdhB1.3.99.14.1,1,1-Trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) degradation13Trans-acting enoyl reductase1.3.113Trans-acting enoyl reductase1.3.11.25. Two component system15Acetyl-CoA acetyltransferaseA to B2.3.1.916cytochrome c oxidase subunit XV assembly protein (A)CtaA17Glutamine synthetaseGlnA6.3.1.218Putative two-component response regulatorMprA20Putative two-component system sensor histidine kinaseMprB2.7.13.320Putative two-component system sensor histidine kinaseMtrA21Putative two-component system sensor histidine kinaseMtrB2.7.13.322Putative serine proteasePepD3.4.2123Two-component response regulatorPrrA2.424Sensor histidine kinaseMtrB2.7.13.325Tryptophan synthase subunit alphaTrpA4.2.1.2026Tryptophan synthase subunit betaTrpB4.2.1.2027Indole-3-glycerol-phosphate synthaseTrpD2.4.2.1828Anthranilate phosphoribosyl transferaseTrpD2.4.2.18 <td>6</td> <td>Hypothetical protein</td> <td></td> <td>2.7.1</td>	6	Hypothetical protein		2.7.1				
8Antigen 85-AfbpA2.3.19Putative acyl-CoA synthetasefadD326.2.110Encyl-CoA hydrataseechA14.2.1.1711Acetyl-CoA acetyltransferasefadA42.3.1.912Succinate dehydrogenase iron-sulfur subunitsdhB1.3.99.14.1,1,1-Trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) degradation13Trans-acting encyl reductase1.3.113Trans-acting encyl reductase1.25. Two component system1.215Acetyl-CoA acetyltransferaseA to B2.3.1.916cytochrome c oxidase subunit XV assembly protein (A)CtaA1719Putative two-component response regulatorMprA1919Putative two-component system sensor histidine kinaseMprB2.7.13.320Putative two-component system sensor histidine kinaseMtrA2.121Putative serine proteasePepD3.4.2123Two-component response regulatorPrrA2.4.1.3.324Sensor histidine kinasePrrB2.7.13.325Tryptophan synthase subunit alphaTrpA4.2.1.2026Tryptophan synthase subunit betaTrpB4.2.1.2027Indole-3-glycerol-phosphate synthaseTrpD2.4.2.1829Anthranilate phosphoribosyl transferaseTrpD2.4.2.1829Anthranilate synthase component ITrpE4.1.3.27	7	Amidase	amiE	3.5.1.4				
9Putative acyl-CoA synthetasefadD326.2.110Enoyl-CoA hydrataseechA14.2.1.1711Acetyl-CoA acetyltransferasefadA42.3.1.912Succinate dehydrogenase iron-sulfur subunitsdhB1.3.99.14. 1,1.1-Trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) degradation13Trans-acting enoyl reductase1.3.113Trans-acting enoyl reductase1.3.11.25. Two component system15Acetyl-CoA acetyltransferaseA to B2.3.1.916cytochrome c oxidase subunit XV assembly protein (A)CtaA17Glutamine synthetaseGlnA6.3.1.218Putative two-component system sensor histidine kinaseMprA2.7.13.32.7.13.32.7.13.320Putative two-component system sensor histidine kinaseMtrB2.7.13.32.7.13.321Putative two-component system sensor histidine kinaseMtrB2.7.13.322Putative serine proteasePepD3.4.2123Two-component response regulatorPtrrA24Sensor histidine kinasePtrrB2.7.13.325Tryptophan synthase subunit alphaTrpA4.2.1.2026Tryptophan synthase subunit betaTrpB4.2.1.2027Indole-3-glycerol-phosphate synthaseTrpD2.4.2.1829Anthranilate phosphoribosyl transferaseTrpD2.4.2.1829Anthranilate synthase component ITrpE4.1.3.27	8	Antigen 85-A	fbpA	2.3.1				
10Enoyl-CoA hydrataseechA14.2.1.1711Acetyl-CoA acetyltransferasefadA42.3.1.912Succinate dehydrogenase iron-sulfur subunitsdhB1.3.99.14.1,1,1-Trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) degradation13Trans-acting enoyl reductase1.3.113Trans-acting enoyl reductase1.3.11414Putative oxidoreductase1.25. Two component system15Acetyl-CoA acetyltransferaseA to B2.3.1.916cytochrome c oxidase subunit XV assembly protein (A)CtaA17Glutamine synthetaseGlnA6.3.1.218Putative two-component response regulatorMprA19Putative two-component system sensor histidine kinaseMtrB2.7.13.320Putative two-component system sensor histidine kinaseMtrB2.7.13.321Putative two-component response regulatorMtrA2.123Two-component response regulatorPrrA2.424Sensor histidine kinasePrrB2.7.13.325Tryptophan synthase subunit alphaTrpA4.2.1.2026Tryptophan synthase subunit betaTrpB4.2.1.2027Indole-3-glycerol-phosphate synthaseTrpD2.4.2.1829Anthranilate phosphoribosyl transferaseTrpD2.4.2.1829Anthranilate synthase component ITrpE4.1.3.27	9	Putative acyl-CoA synthetase	fadD32	6.2.1				
11Acetyl-CoA acetyltransferasefadA42.3.1.912Succinate dehydrogenase iron-sulfur subunitsdhB1.3.99.1 4. 1,1,1-Trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) degradation 13Trans-acting enoyl reductase1.3.114Putative oxidoreductase1.2 5. Two component system 1515Acetyl-CoA acetyltransferaseA to B2.3.1.916cytochrome c oxidase subunit XV assembly protein (A)CtaA17Glutamine synthetaseGlnA6.3.1.218Putative two-component response regulatorMprA19Putative two-component response regulatorMtrB20Putative two-component system sensor histidine kinaseMtrB21Putative two-component system sensor histidine kinaseMtrB22Putative two-component response regulatorMtrA23Two-component response regulatorPtrrA24Sensor histidine kinasePtrB2.7.13.325Tryptophan synthase subunit alphaTrpA4.2.1.2026Tryptophan synthase subunit betaTrpB4.2.1.2027Indole-3-glycerol-phosphate synthaseTrpD2.4.2.1829Anthranilate phosphoribosyl transferaseTrpD2.4.2.1829Anthranilate synthase component ITrpE4.1.3.27	10	Enoyl-CoA hydratase	echA1	4.2.1.17				
12Succinate dehydrogenase iron-sulfur subunitsdhB1.3.99.1 4. 1,1,1-Trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) degradation 13Trans-acting enoyl reductase1.3.113Trans-acting enoyl reductase1.3.11.4Putative oxidoreductase1.2 5. Two component system 15Acetyl-CoA acetyltransferaseA to B2.3.1.916cytochrome c oxidase subunit XV assembly protein (A)CtaA17Glutamine synthetaseGlnA6.3.1.218Putative two-component response regulatorMprA19Putative two-component response regulatorMtrA21Putative two-component system sensor histidine kinaseMtrB2.7.13.322Putative two-component system sensor histidine kinasePepD3.4.2123Two-component response regulatorPrrA24Sensor histidine kinasePrrB2.7.13.325Tryptophan synthase subunit alphaTrpA4.2.1.2026Tryptophan synthase subunit betaTrpB4.2.1.2027Indole-3-glycerol-phosphate synthaseTrpD2.4.2.1829Anthranilate phosphoribosyl transferaseTrpD2.4.2.1829Anthranilate synthase component ITrpE4.1.3.27	11	Acetyl-CoA acetyltransferase	fadA4	2.3.1.9				
4. 1,1,1-Trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) degradation 13 Trans-acting enoyl reductase 1.3.1 14 Putative oxidoreductase 1.2 5. Two component system 15 Acetyl-CoA acetyltransferase A to B 2.3.1.9 16 cytochrome c oxidase subunit XV assembly protein (A) CtaA 17 Glutamine synthetase GlnA 6.3.1.2 18 Putative two-component response regulator MprA 19 Putative two-component system sensor histidine kinase MprB 2.7.13.3 20 Putative two-component system sensor histidine kinase MtrA 21 Putative two-component system sensor histidine kinase MtrA 22 Putative serine protease PepD 3.4.21 23 Two-component response regulator PtrrA 24 Sensor histidine kinase PtrrB 2.7.13.3 25 Tryptophan synthase subunit alpha TrpA 4.2.1.20 26 Tryptophan synthase subunit alpha TrpB 4.2.1.20 27 Indole-3-glycerol-phosphate synthase TrpD 2.4.2.18 28 Anthranilate phosphoribosyl tr	12	Succinate dehydrogenase iron-sulfur subunit	sdhB	1.3.99.1				
13Trans-acting enoyl reductase1.3.114Putative oxidoreductase1.25. Two component system1.215Acetyl-CoA acetyltransferaseA to B2.3.1.916cytochrome c oxidase subunit XV assembly protein (A)CtaA17Glutamine synthetaseGlnA6.3.1.218Putative two-component response regulatorMprA19Putative two-component response regulatorMtrA20Putative two-component system sensor histidine kinaseMtrB2.7.13.320Putative two-component system sensor histidine kinaseMtrB2.7.13.321Putative serine proteasePepD3.4.2123Two-component response regulatorPtrRA24Sensor histidine kinasePtrB2.7.13.325Tryptophan synthase subunit alphaTrpA4.2.1.2026Tryptophan synthase subunit betaTtrpB4.2.1.2027Indole-3-glycerol-phosphate synthaseTrpD2.4.2.1828Anthranilate phosphoribosyl transferaseTrpD2.4.2.1829Anthranilate synthase component ITtrpE4.1.3.27	4. 1,1,1	-Trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) degrad	lation					
14Putative oxidoreductase1.25. Two component system15Acetyl-CoA acetyltransferaseA to B2.3.1.916cytochrome c oxidase subunit XV assembly protein (A)CtaA716glutamine synthetaseGlnA6.3.1.218Putative two-component response regulatorMprA19Putative two-component response regulatorMtrA21Putative two-component response regulatorMtrB2.7.13.322Putative two-component response regulatorMtrB2.7.13.323Two-component response regulatorPrrA24Sensor histidine kinasePrrB2.7.13.325Tryptophan synthase subunit alphaTrpA4.2.1.2026Tryptophan synthase subunit betaTrpB4.2.1.2027Indole-3-glycerol-phosphate synthaseTrpC4.1.1.4828Anthranilate phosphoribosyl transferaseTrpD2.4.2.1829Anthranilate synthase component ITrpE4.1.3.27	13	Trans-acting enoyl reductase		1.3.1				
5. Two component system15Acetyl-CoA acetyltransferaseA to B2.3.1.916cytochrome c oxidase subunit XV assembly protein (A)CtaA17Glutamine synthetaseGlnA6.3.1.218Putative two-component response regulatorMprA19Putative two-component response regulatorMtrA21Putative two-component response regulatorMtrB22Putative two-component system sensor histidine kinaseMtrB23Two-component response regulatorPtrA24Sensor histidine kinasePrrB25Tryptophan synthase subunit alphaTrpA26Tryptophan synthase subunit betaTrpB27Indole-3-glycerol-phosphate synthaseTrpC28Anthranilate phosphoribosyl transferaseTrpD29Anthranilate synthase component ITrpE29Anthranilate synthase component ITrpE	14	Putative oxidoreductase		1.2				
15Acetyl-CoA acetyltransferaseA to B2.3.1.916cytochrome c oxidase subunit XV assembly protein (A)CtaA17Glutamine synthetaseGlnA6.3.1.218Putative two-component response regulatorMprA19Putative two-component system sensor histidine kinaseMprB2.7.13.320Putative two-component response regulatorMtrA21Putative two-component system sensor histidine kinaseMtrB2.7.13.322Putative two-component system sensor histidine kinaseMtrB2.7.13.323Two-component response regulatorPrrA24Sensor histidine kinasePrrB2.7.13.325Tryptophan synthase subunit alphaTrpA4.2.1.2026Tryptophan synthase subunit betaTrpB4.2.1.2027Indole-3-glycerol-phosphate synthaseTrpD2.4.2.1828Anthranilate phosphoribosyl transferaseTrpD2.4.2.1829Anthranilate synthase component ITrpE4.1.3.27	5. Two	component system						
16cytochrome c oxidase subunit XV assembly protein (A)CtaA17Glutamine synthetaseGlnA6.3.1.218Putative two-component response regulatorMprA19Putative two-component system sensor histidine kinaseMprB2.7.13.320Putative two-component response regulatorMtrA21Putative two-component system sensor histidine kinaseMtrB2.7.13.322Putative two-component system sensor histidine kinaseMtrB2.7.13.323Putative serine proteasePepD3.4.2124Sensor histidine kinasePrrB2.7.13.325Tryptophan synthase subunit alphaTrpA4.2.1.2026Tryptophan synthase subunit betaTrpB4.2.1.2027Indole-3-glycerol-phosphate synthaseTrpD2.4.2.1829Anthranilate phosphoribosyl transferaseTrpE4.1.3.27	15	Acetyl-CoA acetyltransferase	A to B	2.3.1.9				
17Glutamine synthetaseGlnA6.3.1.218Putative two-component response regulatorMprA19Putative two-component system sensor histidine kinaseMprB2.7.13.320Putative two-component response regulatorMtrA121Putative two-component system sensor histidine kinaseMtrB2.7.13.322Putative serine proteasePepD3.4.2123Two-component response regulatorPrrA24Sensor histidine kinasePrrB2.7.13.325Tryptophan synthase subunit alphaTrpA4.2.1.2026Tryptophan synthase subunit betaTrpB4.2.1.2027Indole-3-glycerol-phosphate synthaseTrpC4.1.1.4828Anthranilate phosphoribosyl transferaseTrpD2.4.2.1829Anthranilate synthase component ITrpE4.1.3.27	16	cytochrome c oxidase subunit XV assembly protein (A)	CtaA					
18Putative two-component response regulatorMprA19Putative two-component system sensor histidine kinaseMprB2.7.13.320Putative two-component response regulatorMtrA21Putative two-component system sensor histidine kinaseMtrB2.7.13.322Putative serine proteasePepD3.4.2123Two-component response regulatorPtrA24Sensor histidine kinasePtrB2.7.13.325Tryptophan synthase subunit alphaTrpA4.2.1.2026Tryptophan synthase subunit betaTtrpB4.2.1.2027Indole-3-glycerol-phosphate synthaseTrpD2.4.2.1828Anthranilate phosphoribosyl transferaseTrpD2.4.2.1829Anthranilate synthase component ITtrpE4.1.3.27	17	Glutamine synthetase	GlnA	6.3.1.2				
19Putative two-component system sensor histidine kinaseMprB2.7.13.320Putative two-component response regulatorMtrA21Putative two-component system sensor histidine kinaseMtrB2.7.13.322Putative serine proteasePepD3.4.2123Two-component response regulatorPrrA24Sensor histidine kinasePrrB2.7.13.325Tryptophan synthase subunit alphaTrpA4.2.1.2026Tryptophan synthase subunit betaTrpB4.2.1.2027Indole-3-glycerol-phosphate synthaseTrpC4.1.1.4828Anthranilate phosphoribosyl transferaseTrpD2.4.2.1829Anthranilate synthase component ITrpE4.1.3.27	18	Putative two-component response regulator	MprA					
20Putative two-component response regulatorMtrA21Putative two-component system sensor histidine kinaseMtrB2.7.13.322Putative serine proteasePepD3.4.2123Two-component response regulatorPrrA24Sensor histidine kinasePrrB2.7.13.325Tryptophan synthase subunit alphaTrpA4.2.1.2026Tryptophan synthase subunit betaTrpB4.2.1.2027Indole-3-glycerol-phosphate synthaseTrpC4.1.1.4828Anthranilate phosphoribosyl transferaseTrpD2.4.2.1829Anthranilate synthase component ITrpE4.1.3.27	19	Putative two-component system sensor histidine kinase	MprB	2.7.13.3				
21Putative two-component system sensor histidine kinaseMtrB2.7.13.322Putative serine proteasePepD3.4.2123Two-component response regulatorPrrA24Sensor histidine kinasePrrB2.7.13.325Tryptophan synthase subunit alphaTrpA4.2.1.2026Tryptophan synthase subunit betaTrpB4.2.1.2027Indole-3-glycerol-phosphate synthaseTrpC4.1.1.4828Anthranilate phosphoribosyl transferaseTrpD2.4.2.1829Anthranilate synthase component ITrpE4.1.3.27	20	Putative two-component response regulator	MtrA					
22Putative serine proteasePepD3.4.2123Two-component response regulatorPrrA24Sensor histidine kinasePrrB2.7.13.325Tryptophan synthase subunit alphaTrpA4.2.1.2026Tryptophan synthase subunit betaTrpB4.2.1.2027Indole-3-glycerol-phosphate synthaseTrpC4.1.1.4828Anthranilate phosphoribosyl transferaseTrpD2.4.2.1829Anthranilate synthase component ITrpE4.1.3.27	21	Putative two-component system sensor histidine kinase	MtrB	2.7.13.3				
23Two-component response regulatorPrrA24Sensor histidine kinasePrrB2.7.13.325Tryptophan synthase subunit alphaTrpA4.2.1.2026Tryptophan synthase subunit betaTrpB4.2.1.2027Indole-3-glycerol-phosphate synthaseTrpC4.1.1.4828Anthranilate phosphoribosyl transferaseTrpD2.4.2.1829Anthranilate synthase component ITrpE4.1.3.27	22	Putative serine protease	PepD	3.4.21				
24Sensor histidine kinasePrrB2.7.13.325Tryptophan synthase subunit alphaTrpA4.2.1.2026Tryptophan synthase subunit betaTrpB4.2.1.2027Indole-3-glycerol-phosphate synthaseTrpC4.1.1.4828Anthranilate phosphoribosyl transferaseTrpD2.4.2.1829Anthranilate synthase component ITrpE4.1.3.27	23	Two-component response regulator	PrrA					
25Tryptophan synthase subunit alphaTrpA4.2.1.2026Tryptophan synthase subunit betaTrpB4.2.1.2027Indole-3-glycerol-phosphate synthaseTrpC4.1.1.4828Anthranilate phosphoribosyl transferaseTrpD2.4.2.1829Anthranilate synthase component ITrpE4.1.3.27	24	Sensor histidine kinase	PrrB	2.7.13.3				
26Tryptophan synthase subunit betaTrpB4.2.1.2027Indole-3-glycerol-phosphate synthaseTrpC4.1.1.4828Anthranilate phosphoribosyl transferaseTrpD2.4.2.1829Anthranilate synthase component ITrpE4.1.3.27	25	Tryptophan synthase subunit alpha	TrpA	4.2.1.20				
27Indole-3-glycerol-phosphate synthaseTrpC4.1.1.4828Anthranilate phosphoribosyl transferaseTrpD2.4.2.1829Anthranilate synthase component ITrpE4.1.3.27	26	Tryptophan synthase subunit beta	TrpB	4.2.1.20				
28Anthranilate phosphoribosyl transferaseTrpD2.4.2.1829Anthranilate synthase component ITrpE4.1.3.27	27	Indole-3-glycerol-phosphate synthase	TrpC	4.1.1.48				
29 Anthranilate synthase component I TrpE 4.1.3.27	28	Anthranilate phosphoribosyl transferase	TrpD	2.4.2.18				
	29	Anthranilate synthase component I	TrpE	4.1.3.27				

Table 2: The 179 non-homologous enzymes m. leprae

Gene	EC #	Gene	EC #	Gene	EC #	Gene	EC #	Gene	EC #
ppgK	2.7.1.63	Adi	4.1.1.19	murG	2.4.1.227		1.2.1	SecA,azi,div	
glpX	3.1.3.11	murI	5.1.1.3	mraY	2.7.8.13		3.3.2.8	SecD	
Fba	4.1.2.13	panD	4.1.1.11	uppP	3.6.1.27		3.1.1.45	SecE	
Fba	1.1.1.42	Asd	1.2.1.11	thiE	2.5.1.3	rpoA		SecF	
rpiB	5.3.1.6	thrB	2.7.1.39	thiL	2.7.4.16	Omega	2.7.7.6	SecG	
otsA	2.4.1.15	Ask	2.7.2.4	ThiC		rplO		SPase I	3.4.21.89
otsB2	3.1.3.12	sdaA	4.3.1.17	ThiG		rplR		SPase II	3.4.23.36
	3.2.1.21	metE	2.1.1.14	ribG	1.1.1.193	rpiU		TatA	
murA	2.5.1.7	ilvC	1.1.1.86	cobT	2.4.2.21	rplV		TatB	
murB	1.1.1.158	ilvD	4.2.1.9	ribC	2.5.1.9	rplY		TatC	
rmlC	5.1.3.13	Hom	1.1.1.3	ribA	3.5.4.25	rpmC		YajC	
glcB	2.3.3.9	dapD	2.3.1.117	ribG	3.5.4.26	rpmD		YidC	
ppdK	2.7.9.1	dapF	5.1.1.7	RIBB		rpmG		$dnaE - \alpha$ subunit	2.7.7.7
Ppc	4.1.1.31	murF	6.3.2.10	YaaD	4	rpmE		dnaN – β subunit	2.7.7.7
gltB	1.4.1.13	murE	6.3.2.13	YaaE	2.6	rpmF		Subunit – δ	2.7.7.7
cynT	4.2.1.1	hisD	1.1.1.23	nadD	2.7.7.18	rpmH		DnaB	3.6.1
cysE	2.3.1.30	hisG	2.4.2.17	nadA		rpmI		DnaG	2.7.7
metX	2.3.1.31	hisI	3.5.4.19	COAX	2.7.1.33	rpmJ		rnhB	3.1.26.4
Dxr	1.1.1.267	hisE	3.6.1.31	acpS	2.7.8.7	Rrs		ssb	
pgsA	2.7.8.5	hisB	4.2.1.19	panC	6.3.2.1	Rrf		Nfo	3.1.21.2
pssA	2.7.8.8	hisA	5.3.1.16	panB	2.1.2.11	rpsC		Tag	
Cdh	3.6.1.26	HisF	4.1.3	bioB	2.8.1.6	rpsD		UVRC	
Psd	4.1.1.65	HisH	2.4.2	folB	4.1.2.25	rpsJ,nusE		xseA	3.1.11.6
dnaN	2.7.7.7	aroE	1.1.1.25	Folk	2.7.6.3	rpsN		Dpo III	2.7.7.7
Dgt	3.1.5.1	ML2472	1.3.1.12	folP	2.5.1.15	rpsO		PriA	3.6.1
thyX	2.1.1.148	trpD	2.4.2.18	hemD	2.1.1.107	rpsQ		RecF	
Cmk	2.7.4.14	aroA	2.5.1.19	hemD	4.2.1.75	rpsT		RecO	
pyrH	2.7.4.22	aroG	2.5.1.54	COX15		OppB		RecR	
pyrF	4.1.1.23	aroD	4.2.1.10	MENC	4.2.1.113	OppC		RuvA	
murC	6.3.2.8	pheA	4.2.1.51	MenD	2.5.1.64	ProX		RuvC	3.1.22.4
murD	6.3.2.9	aroB	4.2.3.4	argC	1.2.1.38	PstA		argB	2.7.2.8

Bioinformation www.bioinformation.net

open access Hypothesis

										-
CbiQ FhuC FhuD	3.6.3.34	hisA OppA FtsX	5.3.1.24	argJ argJ YrbE	2.3.1.1 2.3.1.35	pstC RfbA YadH	4.1.1.40	MenD YrbD PrrA***	4.1.1.71	-
ddl Alr	6.3.2.4 5.1.1.1	prrB trpA	2.7.13.3 4.2.1.20	ctaA mprB	2.7.13.3	trpC	4.1.1.48		2.7.1	

Table 3: Essential enzymes of M. leprae

S. No	Enzyme	Name of the Enzyme	Name of the pathway
	name		
1	murC	UDP-N-acetylmuramate—L-alanine ligase	D-Glutamine & D-Glutamate
			metabolism.
			Peptidoglycan biosynthesis
2	murD	UDP-N-acetylmuramoyl-L-alanyl-D-glutamate synthetase	D-Glutamine & D-Glutamate
			metabolism.
			Peptidoglycan biosynthesis
3	murE	UDP-N-acetylmuramoylalanyl-D-glutamate2,6-diaminopimelate	Peptidoglycan biosynthesis
		ligase	Lysine biosynthesis
4	murF	UDP-N-acetylmuramoylalanyl-D-glutamyl-2,6-diaminopimelateD-	Peptidoglycan biosynthesis
		alanyl-D-alanyl ligase (D-alanine:D-alanine-adding enzyme)	Lysine biosynthesis
5	murG	N-acetylglucosaminyl transferase	Peptidoglycan biosynthesis
6	mraY	Phospho-N-acetylmuramoyl-pentapeptide-transferase	Peptidoglycan biosynthesis
7	rmlC	Putative dTDP-4-dehydrorhamnose 3,5-epimerase	Nucleotide sugars metabolism.
			Polyketide sugar unit biosynthesis
8	alr	Alanine racemase	D-Alanine metabolism.
			Alanine & Aspartate metabolism