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Abstract: 
With the proliferation of Quad/Multi-core micro-processors in mainstream platforms such as desktops and workstations; a large number of unused CPU 
cycles can be utilized for running virtual machines (VMs) as dynamic nodes in distributed environments. Grid services and its service oriented business 
broker now termed cloud computing could deploy image based virtualization platforms enabling agent based resource management and dynamic fault 
management. In this paper we present an efficient way of utilizing heterogeneous virtual machines on idle desktops as an environment for consumption of 
high performance grid services. Spurious and exponential increases in the size of the datasets are constant concerns in medical and pharmaceutical 
industries due to the constant discovery and publication of large sequence databases. Traditional algorithms are not modeled at handing large data sizes 
under sudden and dynamic changes in the execution environment as previously discussed. This research was undertaken to compare our previous results 
with running the same test dataset with that of a virtual Grid platform using virtual machines (Virtualization). The implemented architecture, A3pviGrid 
utilizes game theoretic optimization and agent based team formation (Coalition) algorithms to improve upon scalability with respect to team formation. 
Due to the dynamic nature of distributed systems (as discussed in our previous work) all interactions were made local within a team transparently.  This 
paper is a proof of concept of an experimental mini-Grid test-bed compared to running the platform on local virtual machines on a local test cluster. This 
was done to give every agent its own execution platform enabling anonymity and better control of the dynamic environmental parameters.  We also 
analyze performance and scalability of Blast in a multiple virtual node setup and present our findings. This paper is an extension of our previous research 
on improving the BLAST application framework using dynamic Grids on virtualization platforms such as the virtual box. 
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Background: 
Bioinformatics heavily [7, 8] relies upon statistical and analytical methods 
of processing biological data. Some of the important biological research 
aims at studying the evolutionary effects of gene mutation and similarity 
between gene sequences using computer technology. This aids biologists to 
find and cure disease causing viruses by applying new and faster methods 
of drug discovery in the laboratory.  Substantial discoveries of new life 
forms and drugs takes place on a daily basis leading to biological data 
being stored into remote databases (resources).  The exponential increase 
in the size of datasets makes it mandatory for biologists to opt for better 
methods of computing genomic data. Biologists use different types of 
sequence comparison tools and software packages to speed up 
experimental research. The problem of organizing information and sharing 
knowledge with the scientific community at the gene level isn't being 
tackled by developing a nomenclature. Instead, computational techniques 
were applied to improve the organization of information in databases 
which lead to the era of computational biology. 
 
The paper is subdivided into the following sections: Section II will give an 
overview of current Blast Literature with insights into the distributed 
systems and Virtual Grids; Section III will talk about the A3pviGrid 
framework [4] and how it functions followed by the differences in 
performances between running our Blast application in our mini-grid test-
bed and comparing it to running individual agents on virtual machine work 
spaces; in Section IV and V we conclude the paper with discussions about 
the results obtained followed by future enhancements to our research work. 
 
 

About Virtual Grids and Bioinformatics Blast: 
Virtual grids are described by a virtual grid resource specification that is 
presented by the application to acquire resources for execution. A virtual 
grid resource specification captures the desired resources for an 
application, and its explicit resource structure can be used by the 
application designer to express parallelism, communication, and other 
forms of optimization. The primary goal of grid computing platforms is to 
seamlessly multiplex distributed computational resources with its 
associated providers and end users across wide area networks [12]. In 
traditional computing environments, resources are multiplexed based on 
typical operating systems confined to limited resources. With the 
proliferation of Quad/Multi-core micro-processors in mainstream platforms 
such as desktops and workstations; a large number of unused CPU cycles 
can be utilized for running virtual machines as dynamic nodes in 
distributed environments as Grid services and its service oriented business 
broker now popularized as cloud computing. Numerous advantages such as 
dynamic sizing of compute nodes and resources are presented here which 
can be user controlled within a secured environment. Further the 
deployment of image based virtualization platforms enables resource 
management and dynamic fault management in a controlled manner. End 
users of high performance compute nodes always expect to meet some 
challenges while deploying Grid resources in the form of services. In this 
paper, we propose a new methodology for Grid computing; to use virtual 
machines as Virtual Grid Environments (VGE) that provides computing 
resources to Grid users having customized requirements originating from 
different platforms having varied Quality of Service (QoS) constraints. The  
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ability to share resources is a basic requirement for the deployment of grids 
while observing the integrity and security of shared resources is of utmost 
importance. Security models need to address resource providers who 
enable trust or integrity mechanisms that restrict the application of grids 
based on mutual trust between resource providers (brokers) and users.  
Virtual machines address three fundamental requirements: support for 
legacy applications, security against un-trusted program execution and 
users, and independent resource deployment and administration. Virtual 
machines can be divided into two main categories [10]: those that 
virtualize complete instruction set architecture (ISA-VMs) including both 
user and system instructions; supports an application binary interface with 
virtualization of system calls [2]. An important class of virtual machines 
[11, 12, 14] consists of ISA-VMs that support same-ISA execution of 
entire operating systems such as IBM S/390 series [18] and VMware [10], 
and the open-source project Virtual box [10] used in our test case. Virtual 
machines can be highly customizable without requiring system restarts. It 
is possible to specify virtual hardware parameters: memory and disk sizes; 
system software parameters such as operating system modules [13, 15, 18] 
loading on demand and kernel configuration. We can agree that deploying 
virtual environments for Grid computing can bring about user enabled 
compute and resource customization, QoS sharing, data manipulation and 
easy management. Instead of complicating users with a Grid middleware 
and Virtualization Engines our existing framework A3pviGrid [4, 6] 
architecture was utilized for virtualization.     
 
Biologists often require sequence comparison and alignment applications 
such as Basic Local Alignment Search Tools or BLAST [9, 13], which are 
effectively utilized for processing large sets of gene sequences for 
similarity matching. These tools have been previously extensively 
investigated [4] and evaluated. BLAST is a set of programs used for 
searching sequence databases with that of the input query sequence for 
similarity matching. BLAST is a heuristic search method which makes 
assumptions about the data based on experience. This implies that it is not 
guaranteed to find the best alignment in all possible circumstances. It 
sacrifices some accuracy for a great increase in speed. The BLAST has 
similarities to the Smith-Waterman algorithm [15], which is slow but 
guaranteed to get the best possible alignments given certain input 
parameters. BLAST uses a special database format to speed up the search 
operation. Several pre-packaged databases exists, and the most notable is 
the “nr” database which is the non-redundant database consisting of all 
sequences in GenBank. BLAST users can take advantage of low-cost, 
efficient Linux cluster architectures such as Beowulf. Unfortunately, the 
efficiency declines when scaled to hundreds of nodes because of serial 
result-merging and output domination [10]. A 300-KB query against the 
5.1-GB uncompressed ‘nt’ database takes 1346 minutes (or 22.4 hours) on 
one compute node. The same query was run within 8 minutes on 128 nodes 
on the Green Destiny supercomputing cluster. A more detailed 
performance analysis and evaluation can be found in the green destiny 
paper [5]. Arun Krishnan in his paper [1], talks about applying BLAST to 
the Globus Grid platform [17] using Perl scripts called GridBLAST on a 
mini-grid test bed. When looking at the computational aspects of BLAST 
[16], typically a full scale BLAST job across whole genomes is highly 
computationally intensive due to the size of the databases queried upon. 
The following section will briefly describe our frame work which was 
deployed on a virtualization platform and compared to our previous results 
[4]. 
 
Running the A3pviGrid agents on virtual machines: 
The ability to invoke a program or workflow say a servlet using a web 
server can be effectively utilized towards distributed processing of data. 
This is termed as the “power server model” of computing. The advantage 
is the simplicity of the model where the client connects to a bunch of web 
servers to enable the consumption of remote services using web pages. 

A3pviGrid works on the principle of the power server model of computing. 
Each of the clients run the A3pviGrid server which is a simplistic http web 
server running services in the form of CGI/Perl wrapper Scripts. The client 
side-coding model enables the developer to develop services using the 
common gateway interface (CGI) and can use any of the languages that 
support CGI scripting. For the sake of simplicity and rapid development of 
services we have used Perl as the language of choice due to its availability 
and portability for most platforms. The A3pviGrid uses a decentralized 
directory structure (APM) to enable peers to register and de-register peers 
and their respective services [4]. 
 
A random set of 10 machines was used for job processing. All the nodes 
ran A3pviGrid web servers.  The Blast.apm file, a directory structure file 
that is local to all nodes was downloaded by all the peers as part of the 
initialization phase. This file contains information such as location 
information of nearby agents, domain and IP address and other important 
data. Each of the nodes compute the ideal set of nodes using a basic ping 
test based on the Blast grid service list. As all the nodes are capable of 
receiving jobs, one of them was randomly chosen for job execution 
(Originator). A Fasta formatted Sequence database (human DNA sequence 
from clone RP11-10K8 on chromosome 1) was used to evaluate the Blast 
searches. The input query file was obtained, and a set of jobs for job 
processing was prepared using the optimal coalition list. Based on QoS 
characteristics namely Latency, Load [3] and CPU time, the Originator of 
the job computes the most optimal coalition. Once the coalition list is 
computed the data files are migrated using the POST method to all the 
members of the coalition. Each of the coalition members start to search 
using the input query files and output the results to an output file.  
 
The output of the Search Phase is appended to a file using POST back to 
Originator where the results are formatted using the Blast format perl script 
and stored as a file or displayed in the browser of the originator. Each of 
the agents ran on a virtual machine test bed having their own execution 
environments. For the sake of true heterogeneous functionality and testing, 
four operating environments were deployed namely: Fedora Linux Core, 
Windows Vista Ultimate, Mac OS Leopard and Sun’s Open Solaris 10. 
Each of the agents were given a resource limit which shared the following 
specifications: 10 GB disk space; 4 GB RAM and Dual 2 GHZ CPU Cores. 
All VM’s were equally created as disk images and were run on 10 
networked computers each hosting the four agents (on four core operating 
environments). The new Gigabyte IRAM modules were installed towards 
testing the improvements in I/O access to the data file where all VM’s 
were equally loaded using the Virtual Box open source virtualization 
software. To cater to a heterogeneous environment and make it truly a 
peer-to-peer model of computing, all nodes were connected over the 
Internet using DSL or Cisco routers and Cable modem lines.  
 
The turnaround and compute time were computed as follows: we assume N 
data distributed over P = 2d tasks, with N an integer multiple of the 
computation costs which comprise of the initial comparisons performed 
during the communication phase where d = log P. The former involves a 
total of P = 2d comparisons, while the latter requires at most (Nd (d+1) /2) 
comparisons. Because the algorithm is perfectly balanced, we assume that 
idle time is negligible.  Our results were obtained by running Gridblast 
code on Linux Clusters (Fedora Core) with 2.0 GHz Duo core CPU’s and 
4GB RAM. A heterogeneous set of peers (three nodes running Linux 
Fedora core; four nodes running Windows Vista Ultimate, three nodes 
running Sun Open Solaris 10) having different configurations were used 
for running the algorithm as a Grid service using the A3pviGrid agents 
running on their VM’s or individual user space. In this project, human 
DNA sequence (GenBankID: AL611946) has been used as the database of 
choice. The size of this sequence is 44,921 base pairs (bp). 
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Figure 1: A3pviGrid an Experimental Grid Framework [4] 
 
Results:  
Initial Results: 
All of the A3pviGrid agents initially ran on individual workstations and the 
initial results were obtained with a mini-grid test-bed of 10 nodes. The 
results indicate the time of execution taken as the average value of the two 
experiments with the same settings and parameters in place. (Table 1, 2 
see supplementary material) 
 
Results with Agents running on VM’s: 
The initial data set was stored and written to scratch disks created in RAM 
along with accessing and storing results on the iRAM installed on the head 
node (where the initial job was submitted).The results are shown in (Table 
3, 4 see supplementary material). From the data recorded we can 
estimate that the initial turnaround time was affected due to an increase in 
latency posed by the VM’s during initialization and data retrieval. As we 
can observe from table 3 the overall turnaround time almost increases two 
fold during initial execution as resources are allocated dynamically by the 
agents during execution. From table 4, the researchers observed that once 
the data was made available, the execution time was decreased more than 
half after the agent and its environment were initialized. A two-fold 
speedup can be observed based on running agents in virtual machines as 
the input/output data access time is cut by half as resources and data were 
made available locally to the agents using virtual machines. 
 
Conclusion and Future directions: 
To improve application and agent specific performance, customized 
Virtual execution environments (Virtual Machines) were created for each 
of the agents running the A3pviGrid service. An increase in performance 
after initialization and execution of agents on the VM’s was observed. A 
coalition based approach to solving a known problem in bioinformatics 
was undertaken. The use of RAM based scratch disks proved useful in 
improving the execution times of the BLAST searches on the Mini-Grid 
test bed. It was found that the A3pviGrid framework fairs well against 
embarrassingly parallel bioinformatics applications such as Blast. The  
 

scalability of the Mini-Grid test bed is based on numerous factors such as 
the resources available; the operating environments and the speedup 
observed after virtualization is applied. A query search approach was 
undertaken and we still need to try and apply query splitting to see how the 
A3pviGrid framework fairs with similar datasets. Future research would be 
towards this direction. 
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Supplementary material: 
 
Tables 1: Turnaround times recorded on the A3pviGrid test-bed without VM’s [4]. 
 Processor 0 Processor 1 Processor 2 Processor 3 
Seq Blastcode 43.0763 63.8885 48.526 83.8911 
Grid Blastcode 61.633 59.6393 58.6436 58.6373 

 Processor 5 Processor 6 Processor 7 Processor 8 
Seq Blastcode 56.8615 44.2549 50.1826 41.5324 
Grid Blastcode 58.6441 53.4334 62.6326 58.6406 

 
 
Tables 2: Turnaround times recorded on the A3pviGrid test-bed without VM’s [4]. 
 Processor 4 Processor 5 Processor 6 Processor 7 
7Seq Blastcode 52.575 53.1896 86.0856 118.026 
Grid Blastcode 72.4102 72.4286 72.5143 72.4188 
 Processor 4 Processor 5 Processor 6 Processor 7 
Seq Blastcode 51.9337 52.769 51.5515 51.2998 
Grid Blastcode 42.4297 32.4361 42.4246 56.4203 
 
 
Tables 3: Turnaround Time (in seconds) is measured as wall-clock execution time from the beginning to the end  
of the task execution of the Agent run on VM’s. 
 Processor 0 Processor 1 Processor 2 Processor 3 
Seq Blastcode 43.0763 63.8885 48.526 83.8911 
Grid Blastcode  
(On VMs) 

51.221 60.3244 59.6436 51.6373 

 Processor 4 Processor 5 Processor 6 Processor 7 
Seq Blastcode 56.8615 44.2549 50.1826 41.5324 
Grid Blastcode 
(On VMs) 

48.6441 44.4334 62.6326 48.6406 

 

Tables 4: Turnaround Time (in seconds) is measured as wall-clock execution time from the beginning to the end  
of the task execution of the Agent run on VM’s. 
 Processor 4 Processor 5 Processor 6 Processor 7 
Seq Blastcode 52.575 53.1896 86.0856 118.026 
Grid Blastcode 
(On VM s) 

42.4102 32.4286 47.5143 43.4188 

 Processor 4 Processor 5 Processor 6 Processor 7 
Seq Blastcode 51.9337 52.769 51.5515 51.2998 
Grid Blastcode 
(On VM s) 

40.4297 32.4361 36.4246 36.4203 

 

 

 


