
Bioinformation Volume 5
open access

www.bioinformation.net Issue 5 Hypothesis

ISSN 0973-2063 (online) 0973-8894 (print)
Bioinformation 5(5): 186-190 (2010) © 2010 Biomedical Informatics

186

A comparative analysis of dynamic grids vs.
virtual grids using the A3pviGrid framework

Avinash Shankaranarayanan1, *, Christine Amaldas2

1School of Chemical and Biotechnology, SASTRA University; 2 Business Information Systems, Royal Melbourne Institute of Technology, Avinash
Shankaranarayanan: Email- avigrid@gmail.com; *Corresponding author.

Received July 26, 2010; Accepted August 26, 2010; Published November 1, 2010

Abstract:
With the proliferation of Quad/Multi-core micro-processors in mainstream platforms such as desktops and workstations; a large number of unused CPU
cycles can be utilized for running virtual machines (VMs) as dynamic nodes in distributed environments. Grid services and its service oriented business
broker now termed cloud computing could deploy image based virtualization platforms enabling agent based resource management and dynamic fault
management. In this paper we present an efficient way of utilizing heterogeneous virtual machines on idle desktops as an environment for consumption of
high performance grid services. Spurious and exponential increases in the size of the datasets are constant concerns in medical and pharmaceutical
industries due to the constant discovery and publication of large sequence databases. Traditional algorithms are not modeled at handing large data sizes
under sudden and dynamic changes in the execution environment as previously discussed. This research was undertaken to compare our previous results
with running the same test dataset with that of a virtual Grid platform using virtual machines (Virtualization). The implemented architecture, A3pviGrid
utilizes game theoretic optimization and agent based team formation (Coalition) algorithms to improve upon scalability with respect to team formation.
Due to the dynamic nature of distributed systems (as discussed in our previous work) all interactions were made local within a team transparently. This
paper is a proof of concept of an experimental mini-Grid test-bed compared to running the platform on local virtual machines on a local test cluster. This
was done to give every agent its own execution platform enabling anonymity and better control of the dynamic environmental parameters. We also
analyze performance and scalability of Blast in a multiple virtual node setup and present our findings. This paper is an extension of our previous research
on improving the BLAST application framework using dynamic Grids on virtualization platforms such as the virtual box.

Keywords: Agents, Blast, Coalition, Grids, Virtual Machines and Virtualization.

Background:
Bioinformatics heavily [7, 8] relies upon statistical and analytical methods
of processing biological data. Some of the important biological research
aims at studying the evolutionary effects of gene mutation and similarity
between gene sequences using computer technology. This aids biologists to
find and cure disease causing viruses by applying new and faster methods
of drug discovery in the laboratory. Substantial discoveries of new life
forms and drugs takes place on a daily basis leading to biological data
being stored into remote databases (resources). The exponential increase
in the size of datasets makes it mandatory for biologists to opt for better
methods of computing genomic data. Biologists use different types of
sequence comparison tools and software packages to speed up
experimental research. The problem of organizing information and sharing
knowledge with the scientific community at the gene level isn't being
tackled by developing a nomenclature. Instead, computational techniques
were applied to improve the organization of information in databases
which lead to the era of computational biology.

The paper is subdivided into the following sections: Section II will give an
overview of current Blast Literature with insights into the distributed
systems and Virtual Grids; Section III will talk about the A3pviGrid
framework [4] and how it functions followed by the differences in
performances between running our Blast application in our mini-grid test-
bed and comparing it to running individual agents on virtual machine work
spaces; in Section IV and V we conclude the paper with discussions about
the results obtained followed by future enhancements to our research work.

About Virtual Grids and Bioinformatics Blast:
Virtual grids are described by a virtual grid resource specification that is
presented by the application to acquire resources for execution. A virtual
grid resource specification captures the desired resources for an
application, and its explicit resource structure can be used by the
application designer to express parallelism, communication, and other
forms of optimization. The primary goal of grid computing platforms is to
seamlessly multiplex distributed computational resources with its
associated providers and end users across wide area networks [12]. In
traditional computing environments, resources are multiplexed based on
typical operating systems confined to limited resources. With the
proliferation of Quad/Multi-core micro-processors in mainstream platforms
such as desktops and workstations; a large number of unused CPU cycles
can be utilized for running virtual machines as dynamic nodes in
distributed environments as Grid services and its service oriented business
broker now popularized as cloud computing. Numerous advantages such as
dynamic sizing of compute nodes and resources are presented here which
can be user controlled within a secured environment. Further the
deployment of image based virtualization platforms enables resource
management and dynamic fault management in a controlled manner. End
users of high performance compute nodes always expect to meet some
challenges while deploying Grid resources in the form of services. In this
paper, we propose a new methodology for Grid computing; to use virtual
machines as Virtual Grid Environments (VGE) that provides computing
resources to Grid users having customized requirements originating from
different platforms having varied Quality of Service (QoS) constraints. The

Bioinformation Volume 5
open access

www.bioinformation.net Issue 5 Hypothesis

ISSN 0973-2063 (online) 0973-8894 (print)
Bioinformation 5(5): 186-190 (2010) © 2010 Biomedical Informatics

187

ability to share resources is a basic requirement for the deployment of grids
while observing the integrity and security of shared resources is of utmost
importance. Security models need to address resource providers who
enable trust or integrity mechanisms that restrict the application of grids
based on mutual trust between resource providers (brokers) and users.
Virtual machines address three fundamental requirements: support for
legacy applications, security against un-trusted program execution and
users, and independent resource deployment and administration. Virtual
machines can be divided into two main categories [10]: those that
virtualize complete instruction set architecture (ISA-VMs) including both
user and system instructions; supports an application binary interface with
virtualization of system calls [2]. An important class of virtual machines
[11, 12, 14] consists of ISA-VMs that support same-ISA execution of
entire operating systems such as IBM S/390 series [18] and VMware [10],
and the open-source project Virtual box [10] used in our test case. Virtual
machines can be highly customizable without requiring system restarts. It
is possible to specify virtual hardware parameters: memory and disk sizes;
system software parameters such as operating system modules [13, 15, 18]
loading on demand and kernel configuration. We can agree that deploying
virtual environments for Grid computing can bring about user enabled
compute and resource customization, QoS sharing, data manipulation and
easy management. Instead of complicating users with a Grid middleware
and Virtualization Engines our existing framework A3pviGrid [4, 6]
architecture was utilized for virtualization.

Biologists often require sequence comparison and alignment applications
such as Basic Local Alignment Search Tools or BLAST [9, 13], which are
effectively utilized for processing large sets of gene sequences for
similarity matching. These tools have been previously extensively
investigated [4] and evaluated. BLAST is a set of programs used for
searching sequence databases with that of the input query sequence for
similarity matching. BLAST is a heuristic search method which makes
assumptions about the data based on experience. This implies that it is not
guaranteed to find the best alignment in all possible circumstances. It
sacrifices some accuracy for a great increase in speed. The BLAST has
similarities to the Smith-Waterman algorithm [15], which is slow but
guaranteed to get the best possible alignments given certain input
parameters. BLAST uses a special database format to speed up the search
operation. Several pre-packaged databases exists, and the most notable is
the “nr” database which is the non-redundant database consisting of all
sequences in GenBank. BLAST users can take advantage of low-cost,
efficient Linux cluster architectures such as Beowulf. Unfortunately, the
efficiency declines when scaled to hundreds of nodes because of serial
result-merging and output domination [10]. A 300-KB query against the
5.1-GB uncompressed ‘nt’ database takes 1346 minutes (or 22.4 hours) on
one compute node. The same query was run within 8 minutes on 128 nodes
on the Green Destiny supercomputing cluster. A more detailed
performance analysis and evaluation can be found in the green destiny
paper [5]. Arun Krishnan in his paper [1], talks about applying BLAST to
the Globus Grid platform [17] using Perl scripts called GridBLAST on a
mini-grid test bed. When looking at the computational aspects of BLAST
[16], typically a full scale BLAST job across whole genomes is highly
computationally intensive due to the size of the databases queried upon.
The following section will briefly describe our frame work which was
deployed on a virtualization platform and compared to our previous results
[4].

Running the A3pviGrid agents on virtual machines:
The ability to invoke a program or workflow say a servlet using a web
server can be effectively utilized towards distributed processing of data.
This is termed as the “power server model” of computing. The advantage
is the simplicity of the model where the client connects to a bunch of web
servers to enable the consumption of remote services using web pages.

A3pviGrid works on the principle of the power server model of computing.
Each of the clients run the A3pviGrid server which is a simplistic http web
server running services in the form of CGI/Perl wrapper Scripts. The client
side-coding model enables the developer to develop services using the
common gateway interface (CGI) and can use any of the languages that
support CGI scripting. For the sake of simplicity and rapid development of
services we have used Perl as the language of choice due to its availability
and portability for most platforms. The A3pviGrid uses a decentralized
directory structure (APM) to enable peers to register and de-register peers
and their respective services [4].

A random set of 10 machines was used for job processing. All the nodes
ran A3pviGrid web servers. The Blast.apm file, a directory structure file
that is local to all nodes was downloaded by all the peers as part of the
initialization phase. This file contains information such as location
information of nearby agents, domain and IP address and other important
data. Each of the nodes compute the ideal set of nodes using a basic ping
test based on the Blast grid service list. As all the nodes are capable of
receiving jobs, one of them was randomly chosen for job execution
(Originator). A Fasta formatted Sequence database (human DNA sequence
from clone RP11-10K8 on chromosome 1) was used to evaluate the Blast
searches. The input query file was obtained, and a set of jobs for job
processing was prepared using the optimal coalition list. Based on QoS
characteristics namely Latency, Load [3] and CPU time, the Originator of
the job computes the most optimal coalition. Once the coalition list is
computed the data files are migrated using the POST method to all the
members of the coalition. Each of the coalition members start to search
using the input query files and output the results to an output file.

The output of the Search Phase is appended to a file using POST back to
Originator where the results are formatted using the Blast format perl script
and stored as a file or displayed in the browser of the originator. Each of
the agents ran on a virtual machine test bed having their own execution
environments. For the sake of true heterogeneous functionality and testing,
four operating environments were deployed namely: Fedora Linux Core,
Windows Vista Ultimate, Mac OS Leopard and Sun’s Open Solaris 10.
Each of the agents were given a resource limit which shared the following
specifications: 10 GB disk space; 4 GB RAM and Dual 2 GHZ CPU Cores.
All VM’s were equally created as disk images and were run on 10
networked computers each hosting the four agents (on four core operating
environments). The new Gigabyte IRAM modules were installed towards
testing the improvements in I/O access to the data file where all VM’s
were equally loaded using the Virtual Box open source virtualization
software. To cater to a heterogeneous environment and make it truly a
peer-to-peer model of computing, all nodes were connected over the
Internet using DSL or Cisco routers and Cable modem lines.

The turnaround and compute time were computed as follows: we assume N
data distributed over P = 2d tasks, with N an integer multiple of the
computation costs which comprise of the initial comparisons performed
during the communication phase where d = log P. The former involves a
total of P = 2d comparisons, while the latter requires at most (Nd (d+1) /2)
comparisons. Because the algorithm is perfectly balanced, we assume that
idle time is negligible. Our results were obtained by running Gridblast
code on Linux Clusters (Fedora Core) with 2.0 GHz Duo core CPU’s and
4GB RAM. A heterogeneous set of peers (three nodes running Linux
Fedora core; four nodes running Windows Vista Ultimate, three nodes
running Sun Open Solaris 10) having different configurations were used
for running the algorithm as a Grid service using the A3pviGrid agents
running on their VM’s or individual user space. In this project, human
DNA sequence (GenBankID: AL611946) has been used as the database of
choice. The size of this sequence is 44,921 base pairs (bp).

Bioinformation Volume 5
open access

www.bioinformation.net Issue 5 Hypothesis

ISSN 0973-2063 (online) 0973-8894 (print)
Bioinformation 5(5): 186-190 (2010) © 2010 Biomedical Informatics

188

Figure 1: A3pviGrid an Experimental Grid Framework [4]

Results:
Initial Results:
All of the A3pviGrid agents initially ran on individual workstations and the
initial results were obtained with a mini-grid test-bed of 10 nodes. The
results indicate the time of execution taken as the average value of the two
experiments with the same settings and parameters in place. (Table 1, 2
see supplementary material)

Results with Agents running on VM’s:
The initial data set was stored and written to scratch disks created in RAM
along with accessing and storing results on the iRAM installed on the head
node (where the initial job was submitted).The results are shown in (Table
3, 4 see supplementary material). From the data recorded we can
estimate that the initial turnaround time was affected due to an increase in
latency posed by the VM’s during initialization and data retrieval. As we
can observe from table 3 the overall turnaround time almost increases two
fold during initial execution as resources are allocated dynamically by the
agents during execution. From table 4, the researchers observed that once
the data was made available, the execution time was decreased more than
half after the agent and its environment were initialized. A two-fold
speedup can be observed based on running agents in virtual machines as
the input/output data access time is cut by half as resources and data were
made available locally to the agents using virtual machines.

Conclusion and Future directions:
To improve application and agent specific performance, customized
Virtual execution environments (Virtual Machines) were created for each
of the agents running the A3pviGrid service. An increase in performance
after initialization and execution of agents on the VM’s was observed. A
coalition based approach to solving a known problem in bioinformatics
was undertaken. The use of RAM based scratch disks proved useful in
improving the execution times of the BLAST searches on the Mini-Grid
test bed. It was found that the A3pviGrid framework fairs well against
embarrassingly parallel bioinformatics applications such as Blast. The

scalability of the Mini-Grid test bed is based on numerous factors such as
the resources available; the operating environments and the speedup
observed after virtualization is applied. A query search approach was
undertaken and we still need to try and apply query splitting to see how the
A3pviGrid framework fairs with similar datasets. Future research would be
towards this direction.

Acknowledgements:
This project is part of a Masters by Research dissertation at SASTRA
University, Thanjavur, India. We would like to take this opportunity to
thank Dr K.N. Somasekaran, Dean, Department of Chemical and
Biotechnology, SASTRA University for his valuable comments and
feedback.

References:
[1] A Krishnan. Concurrency and Computation: Practice and

Experience 17:1607 (2005).
[2] Altschul et al. Journal of Molecular Biology 215:403 (1990)

[PMID: 2231712]
[3] A Shankar et al. PDPTA 27:30 (2005)
[4] Shankaranarayanan et al. International Journal of Genetic

Engineering and Biotechnology 1: 23 (2010)
[5] Shankaranarayanan et al. IEEE Computer Society, CIMCA-

IAWTIC'06 2: 315 (2006)
[6] A Darling et al. ClusterWorld Conference & Expo 311 (2003).
[7] S Burt et al. BMC Bioinformatics 6: 168 (2005) [PMCID:

PMC1190154]
[8] C Gibas et al. O'Reilly & Associates 126 (2001).
[9] DG Higgins et al. Methods Enzymol 266:383 (1996).
[10] J Marshall et al. Comput Methods Programs Biomed 93(1): 73

(2009) [PMCID: PMC2665129]
[11] I Foster et al. The International Journal of Supercomputer

Applications and High Performance Computing. 11(2):115 (1997)
[12] A Konagaya. BMC Bioinformatics 7(Suppl 5): S10 (2006)

Bioinformation Volume 5
open access

www.bioinformation.net Issue 5 Hypothesis

ISSN 0973-2063 (online) 0973-8894 (print)
Bioinformation 5(5): 186-190 (2010) © 2010 Biomedical Informatics

189

[13] R Braun et al. Future Generation Computer Systems 17(6):745
(2001)

[14] Joseph et al. Microprocess Microsyst 33(4): 281 (2009) [PMCID:
PMC2771927]

[15] Jacob et al. ACM Trans Reconfigurable Technol Syst 1(2): 9 (2008)
[PMCID: PMC2615407]

[16] Isaac et al. BMC Bioinformatics 8:185 (2007) [PMCID:
PMC1896180]

[17] Paulo et al. BMC Bioinformatics 6: 197 (2005) [PMCID:
PMC1190159]

[18] V Talukdar et al. Biotechnol J 4(9):1244 (2009) [PMCID:
PMC2697647]

Edited by P. Kangueane
Citation: Shankaranarayanan et al. Bioinformation 5(5): 186- 190 (2010)

License statement: This is an open-access article, which permits unrestricted use, distribution, and reproduction in any medium, for non-commercial
purposes, provided the original author and source are credited

.

Bioinformation Volume 5
open access

www.bioinformation.net Issue 5 Hypothesis

ISSN 0973-2063 (online) 0973-8894 (print)
Bioinformation 5(5): 186-190 (2010) © 2010 Biomedical Informatics

190

Supplementary material:

Tables 1: Turnaround times recorded on the A3pviGrid test-bed without VM’s [4].
 Processor 0 Processor 1 Processor 2 Processor 3
Seq Blastcode 43.0763 63.8885 48.526 83.8911
Grid Blastcode 61.633 59.6393 58.6436 58.6373

 Processor 5 Processor 6 Processor 7 Processor 8
Seq Blastcode 56.8615 44.2549 50.1826 41.5324
Grid Blastcode 58.6441 53.4334 62.6326 58.6406

Tables 2: Turnaround times recorded on the A3pviGrid test-bed without VM’s [4].
 Processor 4 Processor 5 Processor 6 Processor 7
7Seq Blastcode 52.575 53.1896 86.0856 118.026
Grid Blastcode 72.4102 72.4286 72.5143 72.4188
 Processor 4 Processor 5 Processor 6 Processor 7
Seq Blastcode 51.9337 52.769 51.5515 51.2998
Grid Blastcode 42.4297 32.4361 42.4246 56.4203

Tables 3: Turnaround Time (in seconds) is measured as wall-clock execution time from the beginning to the end
of the task execution of the Agent run on VM’s.
 Processor 0 Processor 1 Processor 2 Processor 3
Seq Blastcode 43.0763 63.8885 48.526 83.8911
Grid Blastcode
(On VMs)

51.221 60.3244 59.6436 51.6373

 Processor 4 Processor 5 Processor 6 Processor 7
Seq Blastcode 56.8615 44.2549 50.1826 41.5324
Grid Blastcode
(On VMs)

48.6441 44.4334 62.6326 48.6406

Tables 4: Turnaround Time (in seconds) is measured as wall-clock execution time from the beginning to the end
of the task execution of the Agent run on VM’s.
 Processor 4 Processor 5 Processor 6 Processor 7
Seq Blastcode 52.575 53.1896 86.0856 118.026
Grid Blastcode
(On VM s)

42.4102 32.4286 47.5143 43.4188

 Processor 4 Processor 5 Processor 6 Processor 7
Seq Blastcode 51.9337 52.769 51.5515 51.2998
Grid Blastcode
(On VM s)

40.4297 32.4361 36.4246 36.4203

