
open access www.bioinformation.net Web Server
 Volume 6(7)

ISSN 0973-2063 (online) 0973-8894 (print)
Bioinformation 6(7): 288-290 (2011) 288 © 2011 Biomedical Informatics

OntoVisT: A general purpose Ontological
Visualization Tool

Alok Kumar Srivastava*, Narinder Singh Sahni

School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi - 110067, India; Alok Kumar Srivastava - Email: foralok@gmail.com;
*Corresponding author

Received May 21, 2011; Accepted June 06, 2011; Published June 23, 2011

Abstract:
Ontologies have emerged as a fast growing research topic in the area of semantic web during last decade. Currently there are 204 ontologies that are available
through OBO Foundry and BioPortal. Several excellent tools for navigating the ontological structure are available, however most of them are dedicated to a
specific annotation data or integrated with specific analysis applications, and do not offer flexibility in terms of general-purpose usage for ontology exploration.
We developed OntoVisT, a web based ontological visualization tool. This application is designed for interactive visualization of any ontological hierarchy for a
specific node of interest, up to the chosen level of children and/or ancestor. It takes any ontology file in OBO format as input and generates output as DAG
hierarchical graph for the chosen query. To enhance the navigation capabilities of complex networks, we have embedded several features such as search criteria,
zoom in/out, center focus, nearest neighbor highlights and mouse hover events. The application has been tested on all 72 data sets available in OBO format through
OBO foundry. The results for few of them can be accessed through OntoVisT-Gallery.

Availability: The web based application can be accessed through http://ccbb.jnu.ac.in/OntoVisT.html. The applet for visualization is also downloadable from the
OntoVisT website.

Keywords: ontology; visualization tool; directed acyclic graphs; web server; gene ontology.

Background:
An ontology is a shared conceptualization of knowledge in a particular domain.
Biological ontologies define the basic terms and the relations in biological
domains, as well as rules for combining these terms and relations. The OBO
Foundry [1] and BioPortal [2] have developed a large library of bio-medical
ontologies. These ontologies can be shared across different bio-medical
domains. The OBO file format is the most common file format in the OBO
Foundry collection. It aims to achieve human readability, ease of parsing,
extensibility and minimal redundancy. Out of the 96 ontologies that are
currently available through OBO Foundry, 72 are in OBO format. The number
of terms in any ontology may vary from a few to several thousand making it
difficult to interpret the data even after parsing the OBO files. Visualization is
one of the best alternatives to understand the relations contained in any
ontology. However, visualization of an ontology is not an easy task.
Relationships between the ontology terms are usually represented as Directed
Acyclic Graphs (DAG). It is enriched with role relations among concepts and
each concept has various attributes related to it. The structure of any ontology
allows a node to have multiple ancestors and/or children.

There are several popular approaches available for ontological navigation. The
most simple approach is to present them in tabular form (e.g., FatiGO [3]), but
has the drawback that it loses substantial information regarding the relations
between the terms. The second approach is to present the structure in a tree
form. There exists two popular ways to represent tree structure: a flat tree (e.g.,
TO-GO [4]) and an expandable tree in which a node with several parents is
represented in the tree multiple times, once under each parent (e.g., AmiGO

[5]). The third approach is to represent the result in the form of static graphs,
either as a tree or DAG (e.g., GO Term Finder [6]). The static graph structure
usually requires less memory in the case of small networks with fewer edges,
but it reduces the interpretiability of the complex networks due to cluttered
edges and overlapping nodes. In a typical case, the different ontology terms are
distributed across different levels of hierarchy. Identifying the clusters of
similar terms in the ontology network becomes much simpler and informative,
if the results are presented interactively in a DAG structure. One of the
problems in displaying large DAG network is the loss of hierarchical order
needed for displaying parent-child relationships. The problem with non-
hierarchical representation is that its complexity increases with increase in
number of nodes in the graph, which makes the interpretation difficult.
Alternatively, we can improve the interpretability by modifying the structure in
DAG hierarchical form, in such a way that it contains both the property of
DAG as well as placement of all child nodes below their parent nodes. The
advantage of this representation is that the flow of information is uni-
directional reducing the effort to interpret the network.

Implementation:
Application Description:
OntoVisT Visualization module is written in Java using prefuse-alpha [7]
library. Figure 1 shows the schematic diagram and work flow of OntoVisT
applications. The visualization module can be used in any of the three forms,
(1) web server application (2) stand-alone application and (3) plug-in
application.

BIOINFORMATION open access

ISSN 0973-2063 (online) 0973-8894 (print)
Bioinformation 6(7): 288-290 (2011) 289 © 2011 Biomedical Informatics

Figure 1: Schematic diagram and work flow of the OntoVisT application. The
graph displays the schematic diagram and work flow of OntoVisT.

Web server application:
The web application is divided into two main modules: the parsing module and
the visualization module. Users can select any of the 72 ontology files available
from the drop down list or upload an ontology file in OBO format. The query
form on the same page allows the user to define custom level of abstraction at
various levels of hierarchy by selecting the query node, as well as number of
levels of the children and/or ancestor. The query node must contain both
components: an ontology identifier and a unique id for each ontology (e.g.,
GO: 0009117, DOID: 00000003, AAO: 00000001). The level defines the depth
of the children or ancestors in the hierarchy. Three types of visualization
modules have been embedded to explore any ontological structure: (1)
Visualization of the children of a specific node: a recursive breadth-first search
in top-down manner (up to defined level) is carried out to determine all
children; (2) Visualization of an ancestor of a query node: a recursive breadth-
first search in down-top manner (up to defined level) is carried to determine all
possible paths back to the top nodes; (3) Visualization of both, children as well
as ancestors of a specific node. The network is obtained by enumerating all the
paths contained in children and ancestor components.

Figure 2: Dummy nodes description. The Figure explains the insertion of
dummy nodes for maintaining DAG hierarchical structure. (a) A sample DAG
graph with 5 nodes (A, B1, B2, C and D). (b) An alternative representation of
the same graph indicates three possible routes between A and D. (c) Level
assigned to each node is the maximum level assigned when traversed through
all the possible paths. (d) Describes the edge description for all paths. The
column represents source node, level of source node, sink node and level of
sink node respectively. (e) Dummy nodes added to each edge are calculated as
the difference between sink and source level minus 1. (f) A unidirectional DAG
hierarchical graph after inserting the dummy nodes to the original graph.

OntoVisT Output:
Given the input parameters, OntoVisT provides interactive visualization of any
complex ontological network. Complexity increases with the increase in
number of nodes in the network. To deal with this problem, we have embedded
a search option which highlights the node of interest. The application allows

the user to translate the network in such a way that the node of interest is
placed in the center by clicking over it. It also allows the user to zoom in/out
the topology of the network by using right mouse button. Left mouse button
can be used to drag complete network topology. Further, a mouse hover over
any node displays the details associated with the term on the bottom left side of
the page. The projection of the graph is fixed in order to maintain the
consistency in the layout. In order to maintain the hierarchical structure of a
DAG, we have inserted dummy nodes in the network, explained with the help
of a synthetic example discussed in Figure 2. Figure 2a shows a small DAG
network, and Figure 2b shows an alternate and much clearer representation of
all possible paths between A and D in the same DAG. Each path assigns a
different level (actual level) to each node. We assign a dummy level to each
node as the maximum level that occurs when we traverse through all possible
paths starting from the root node (Figure 2c). The difference between the
dummy levels of the source and sink nodes of each edge, is used to count the
number of dummy nodes (Nd) required to maintain the unidirectional flow
(Figure 2d). Nd equals difference between sink and source level, minus 1 for
each edge (Figure 2e). This leads to a unidirectional DAG hierarchical
structure obtained after inserting the desired dummy nodes to each path
(Figure 2f).

The standalone application:
The OntoVisT module is platform independent and can be run as a standalone
application on any machine with java (version 1.5 or higher) enabled web
browser. The source code and the class files for the application are packaged
into a single executable jar file OntoVisT.jar. The OntoVisT package, sample
XML file, and main html file (OntoVisT.html) can be downloaded from the
OntoVisT download page. Pre-requisit, installation instruction and usage can be
found on the OntovisT help page. The visualization module can be used to
explore the ontology graph locally through web-browser using OntoVisT.html.

Plug-in application:
OntoVisT applet can be easily integrated as a plug-in with any other ontology
based navigation application, requiring only the XML file as an input. The
visualization output can easily be modified by modifying the XML file only.

Discussion:
Table 1 (see Supplementary material) presents a comparative summary of
OntoVisT with other Java based applications (TGVizTab [8], OntoTrack [9],
BINGO [10], GOLEM [11]) used for visualizing ontologies. Amongst the
surveyed tools, OntoVisT is the only tool that can be used to study the modular
structure of any ontological network. The supporting files containing DAG
structure are downloadable in both text and XML formats and can be further
used for custom level of ontological analysis. The OntoVisT applet supports
interactive visualization of both trees as well as DAGs. It offers flexibility in
terms of its usage, which only requires XML file as an input in a prescribed
format.

Authors' contributions:
AKS has conceptualized the study, wrote the application, implemented the web
server, tested the program and drafted the manuscript. NSS helped in
enhancing the features and writing the manuscript.

Acknowledgments:
AKS is a recipient of a senior research fellow grant provided by CSIR (grant
9/263-0771-9). The author would like to acknowledge COE funding for the
school provided by Department of Biotechnology, India.

References:
[1] Smith B et al. Nat Biotechnol. 2007 25: 1251 [PMID: 17989687]
[2] Noy NF et al. Nucleic Acids Res. 2009 37: W170 [PMID: 19483092]
[3] Al-Shahrour F et al. Bioinformatics 2004 20(4): 578 [PMID: 14990455]
[4] Yu U et al. Bioinformatics 2005 21(17): 3580 [PMID: 15994194]
[5] Carbon S et al. Bioinformatics 2009 25(2): 288 [PMID: 19033274]
[6] Boyle EI et al. Bioinformatics 2004 20(18): 3710 [PMID: 15297299]
[7] http://prefuse.org/
[8] http://users.ecs.soton.ac.uk/ha/TGVizTab/TGVizTab.htm
[9] http://www.informatik.uni-ulm.de/ki/ontotrack/

[10] Maere S et al. Bioinformatics 2005 21: 3448 [PMID: 15972284]
[11] Sealfon RS et al. BMC Bioinformatics. 2006 7: 443 [PMID: 17032457]

Edited by P Kangueane
Citation: Srivastava & Sahni. Bioinformation 6(7): 288-290 (2011)

License statement: This is an open-access article, which permits unrestricted use, distribution, and reproduction in any medium, for non-commercial purposes,
provided the original author and source are credited.

BIOINFORMATION open access

ISSN 0973-2063 (online) 0973-8894 (print)
Bioinformation 6(7): 288-290 (2011) 290 © 2011 Biomedical Informatics

Supplementary material:

Table 1: Comparative analysis of OntoVisT with other interactive tools which displays DAG layout

Application Description
Tool TGVizTab OntoTrack BINGO GOLEM OntoVisT
Year 2003 2004 2005 2006 2011

Application Type

web based No No No Yes Yes
Stand-alone Yes Yes Yes Yes Yes
used as plug-in No No No No Yes

Prerequisite
Base Language java Java Java Java java
Plug-in Required Protégé Racer server cytoscape No No

Interactivity

Hierarchical display No Yes Yes No Yes
Depth Calculation Yes Yes No No Yes
Zoom Yes Yes Yes No Yes
Focus highlight highlight highlight highlight highlight
Overlapping nodes Yes No No No No
Projection Not predictable Fixed Fixed Not predictable Fixed

Flexibility

Data Bound No No GO bound GO bound No
Bound with Analysis Tool No No Yes Yes No
Custom level abstraction No No No No Yes
Usage Multiple Multiple Multiple Fixed Multiple

Supporting file Format XML XML GML, XGMML No Text, XML

Performance
Graph Layout Unordered Ordered Multiple Unordered Ordered
Large Network Difficult to interpret Interpretable Interpretable Difficult to interpret Interpretable

* The comparison is based on the information available from individual website as on Feb, 2011.

