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Abstract: 
A permutation-based algorithm is introduced for the representation of closed RNA secondary structures. It is an efficient ‘loopless’ 
algorithm, which generates the permutations on base-pairs of ‘k-noncrossing’ setting partitions. The proposed algorithm reduces 
the computational complexity of known similar techniques in O(n), using minimal change ordering and transposing of not adjacent 
elements.  
 
Keywords: Closed RNA secondary structures, k-noncrossing partitions, permutation-based algorithm 
 
 

 
 
Background: 
The bimolecular structure prediction problem has been 
examined for years, based on the fact that a function of a 
bimolecule is largely dictated by its structure. The ultimate goal 
of structure prediction is to obtain the three dimensional 
structure of bimolecules through computation. The key concept 
for solving the above mentioned problem is the appropriate 
representation of the biological structures. The problems that 
concern representations of bimolecular structures are either 
characterized as NP-complete or with high complexity. A 
characteristic common to these problems of molecular biology 
consists in the satisfaction of a set of constraints coming from 
different sources of biological knowledge. Hence, we focus on 
the representation and visualization of closed RNA secondary 
structure without pseudoknots, which can reasonably be 
viewed as a first step towards three dimensional prediction 
modeling. Generally, there are six kinds of representations for 
closed RNA secondary structures: Full representation, Tree 
representation, Circle representation, Arc annotated, Mountain 
representation and Bracket representation. The major areas of 
computational study in RNA secondary structure prediction 
include dynamic programming algorithms [1], stochastic 
algorithms such as Bioambients calculus [2], comparative 
methods [3], simulated annealing [4], and most recently 

evolutionary algorithms which attempt to mimic a natural 
folding pathway by using a populations based approach [5]. 
Nowadays, an increasing number of researchers have released 
novel RNA structure analysis and prediction algorithms for 
comparative approaches to structure prediction. Their 
approaches are based on the fact that closed RNA structures can 
be viewed as mathematical objects obtained by abstracting 
topologically non-relevant properties of planar folding of 
single-stranded nucleic acids. These algorithms require 
significant computational resources and thus are impractical for 
sequences of even modest length.  
 
From the biological view, the RNA's structure is dominated by 
base-pairing interactions, most of which are Watson-Crick pairs 
between complementary bases. The base-paired structure of 
RNA is called, its secondary structure. Due to the fact that 
Watson-Crick pairs are such a stereotyped and relatively simple 
interaction, accurate RNA secondary structure prediction 
appears to be an achievable goal. RNA secondary structures 
(Figure 1) folding cooperatively allow the creations of 
pseudoknot free secondary structures, where no base pairs 
overlap, that is there are no pair of bases (i, j) and (i’, j’) with i < 
i’ < j’ < j. In literature [6] except hairpin and interior loops we 
can also find definitions for bans, multiloops, external loops, 
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pseudo knot loops, interior-pseudo knotted loops and multi-
pseudo knotted loops. 
  

 
Figure 1: Representations of RNA secondary structures (An 
RNA molecule can be viewed as an ordered sequence of n bases 
and secondary structures can be generally defined as a set of 
pairs i - j, 1 ≤ i ≤ j ≤ n, indexed starting at 1 from the so-called 5`-
end and with each index in, at most, one pair.) (a) A secondary 
structure can be represented as an arc diagram, in which base 
indices are shown as vertices on a straight line, ordered form 
the 5`-end and arcs (always above the straight line) indicate 
base pairs, and all chemical bonds of its backbone are ignored. 
(b) Matching Nested Sets as an example of permutation  [1-4-3-
2-5-8-7-6] in M4. 
 
Methodology:  
In this case consideration will be given to the surveys of Trotter 
[7] & Johnson [8] for the generation of specific permutations by 
transposing pairs of elements, using a recursive procedure.  
 
K-noncrossing closed RNA structures: 
Closed RNA secondary structure is represented as k-
noncrossing set of partitions, which corresponds to the base-
pairs and no base-pairs respectively. A (set) partition of [2n] is a 
collection of disjoint subsets on [2n], representing a 2n union 
(Figure 1a). Each element of a partition is called a block. A 
(complete) matching on [2n] = {1, 2, 2n} can be represented by 
listing its 2n blocks, as {(i1, j1), (i2, j2),…, (i2n, j2n)}, where ir < jr for 
1 ≤ r ≤ n. Two blocks (also called arcs) (i, j) and (i’, j’) form a 
crossing if i < i’ < j < j’, and a nesting if i < i’ < j’ < j. It is well-
known that the number of matching’s on [2n] with no crossings 
(or with no nestings) is given by the n-th Catalan number. Let 
π2n denote the set of partitions of [2n] and a diagram π ε π2n. A 
k-distant (k is a nonnegative integer) crossing of π is a pair of 
edges (i, j) and (i’, j’) of π satisfying i < i’ < j < j’ and j < i’ ≥ k. A 
k-distant nesting of π is a set of two edges (i, j) and (i’, j’) of π 
satisfying i < i’ ≤ j’ < j and j < i’ ≥ k.  A partition or matching π is 
k-distant noncrossing if π has no k-distant crossing and k-distant 
non-nesting if π has no k-distant nesting. 
 
Generating Permutations: 
Our case study includes all the numbers that begin with 1 and 
have unique alternate even-odd digits. The problem mainly 
concerns the quick development of a special set of permutations 
G2n, rather than the common n! permutations of the first n 

components. These alternative permutations can be defined in 
the form as shown in supplementary material. 
 

 
Figure 2: Diagrammatical representation of the proposed 
algorithm 
 
Discussion:  
RNA pseudoknot structures can be categorized in terms of the 
maximal size of sets of mutually crossing bonds. A k-
noncrossing RNA structure has at most k-1 mutually crossing 
bonds and a minimum bond-length of 2, i.e., for any i, the 
nucleotides i and i+1 cannot form a bond. According to this 
formulation, a k-noncrossing RNA structure can be represented 
as a digraph in which all vertices have degree, that does not 
contain a k-set of mutually intersecting arcs and 1-arcs, i.e. arcs 
of the form (i, i+1), respectively [9]. Furthermore, RNA 
secondary structure is often assumed to be sufficient for being 
able to predict the RNA function. This assumption can be 
justified by observations of well conserved secondary structures 
and the fact that secondary structures fold fast, while tertiary 
interactions need much more time to form [10]. The fact that it 
is possible to predict secondary structures using nearest-
neighbour parameters [11] also suggests that secondary 
structure contributes much more to the stability of the RNA 
structure, than the tertiary interactions. 
 
Moreover, an imperative algorithm for generating 
combinatorial objects is called loopless, if for every set of n 
elements the number of steps needed to generate the first object 
is less than O(n), the decision whether an object is the last is 
obtained within O(1) steps and every transition between 
successive objects requires at most O(1) steps. Generally, an 
algorithm is loopless if the objects are represented in a simple 
form and can be read directly without requiring any additional 
steps. 
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The proposed model-algorithm (Figure 2) includes the 
following procedure: Given an integer array of certain length 
(L), the algorithm generates the permutation of digits {1, 2,…, 
2n} in the integer array M[i, j], i, j = 1, 2,…, 2n. The number of 
the iterations T is calculated proportionally with the total 
number of elements required for the permutations of number n. 
(e.g. for 3 one element, for 4→2, for 5→4 etc). A permutation is 
created by swapping the newly added digit n with an existing 
digit in the array. If n is odd, the permutation should occur only 
if the corresponding swapped number is odd and vice versa. 
Thus, only digits at positions n-3, n-5... should be considered. 
Note that the first digit (1) of the array is not swappable. For the 
n+1 element that is added after the last position on each of the 
previous permutations every permutation of previous mark is 
recalled. Since the recursive detection of the transposing, 
through the minimal change of permutations, can be performed 
at the same time, the running time of the algorithm will be 
proportional to the size of the computation tree (the number of 
recursive calls). Furthermore, in this tree, each node has exactly 
T-1 children and each leaf corresponds to a unique permutation. 
 
Conclusion: 
From the set of canonical pairs, it is clear that a given RNA 
sequence has many potential structures. In fact, the number of 
possible structures grows exponentially with the length of the 
RNA sequence. The challenge is to identify whether structure 
plays a functional role for a given RNA sequence and, if yes, to 
predict this functional RNA structure. In medical applications, 

accurate structural knowledge will be the starting point to 
create new lead compounds which would eventually be applied 
into more effective drugs. Therefore, the accurate prediction of 
RNA structure could simultaneously provide clues for curing 
an assortment of diseases, especially those that are based on 
RNA viruses. Since the conception of permutation to the 
individual representation of RNA secondary structure in 
genetic algorithms has been introduced, the problem can be 
essentially represented as a neural network in future work, 
which can be optimized through genetic algorithms techniques. 
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Supplementary material: 
 
An alternative permutation can be defined in the form:  
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If MM ′,  are two distinct permutations of {1,2…,2n} which differ at two positions, in order to transform M to M ′  it is necessary 
to transpose only two elements using minimal change for permutations. This is equivalent to saying that there exists an integer 
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The following recursive method can be defined, by repeating each permutation in the above nG2 list, T=ndiv2 times, inserting 

another element (even/odd) after the last position of each iM , and transposing the T-1 permutations.  

If [ ]2,11 =M  & [ ]3,2,15.1 =M  then 2M is obtained by inserting the digit 4 at the end of 5.1M and taking two copies of this 
permutation: 
1-2-3-4 
1-2-3-4 
 
Through a single transposition of the even digits 2 and 4 in the second permutation, [ ] [ ]{ }2,3,4,1,4,3,2,12 =M  is obtained.  

The 2M set, consisting of the permutations [1,2,3,4] & [1,4,3,2],  is repeated twice and then the next digit, 5, is inserted at the end of 
each permutation. 
1-2-3-4-5   1-4-3-2-5 
1-2-3-4-5 1-4-3-2-5 
 
By a single transposition of the odd digits 3 and 5 in both second cases of every pair of permutations, the results are respectively: 
1-2-3-4-5  1-4-3-2-5 
1-2-5-4-3  1-4-5-2-3 

[ ] [ ] [ ] [ ]{ }3,2,5,4,1,5,2,3,4,1,3,4,5,2,1,5,4,3,2,15.2 =M . 
 
Finally, in the case of M3 the algorithm inserts the digit 6 after the last position in every permutation of the above case and repeats 
each permutation of M2.5  three times as shown in Table 1: This yields to all the permutations of M3 (Figure 1b), 
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4,3,2,5,6,1,2,3,6,5,4,1,6,3,2,5,4,1
4,5,2,3,6,1,2,5,6,3,4,1,6,5,2,3,4,1
2,3,4,5,6,1,4,3,6,5,2,1,6,3,4,5,2,1
2,5,4,3,6,1,4,5,6,3,2,1,6,5,4,3,2,1

3M  
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Table 1: M3 Permutations 
M3 Permutations 
Permutations Transposition of digits 
1-2-3-4-5-6  
1-2-3-4-5-6 4,6 
1-2-3-4-5-6 2,6 
1-2-5-4-3-6  
1-2-5-4-3-6 4,6 
1-2-5-4-3-6 2,6 
1-4-3-2-5-6  
1-4-3-2-5-6 2,6 
1-4-3-2-5-6 4,6 
1-4-5-2-3-6  
1-4-5-2-3-6 2,6 
1-4-5-2-3-6 4,6 

 


