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Abstract: 
Hypothetical protein [HP] annotation poses a great challenge especially when the protein is putatively linked or mapped to 
another protein. With protein interaction networks (PIN) prevailing, many visualizers still remain unsupported to the HP 
annotation. Through this work, we propose a six-point classification system to validate protein interactions based on diverse 
features. The HP data-set was used as a training data-set to find putative functional interaction partners to the remaining proteins 
that are waiting to be interacting. A Total Reliability Score (TRS) was calculated based on the six-point classification which was 
evaluated using machine learning algorithm on a single node. We found that multilayer perceptron of neural network yielded 
81.08% of accuracy in modelling TRS whereas feature selection algorithms confirmed that all classification features are 
implementable. Furthermore statistical results using variance and co-variance analyses confirmed the usefulness of these 
classification metrics. It has been evaluated that of all the classification features, subcellular location (sorting signals) makes higher 
impact in predicting the function of HPs. 
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Background: 
The protein-protein interaction (PPI) data provide a powerful 
representation for discerning organization of cells besides 
predicting biological functions and providing insight into a 
variety of biochemical processes [1]. In the recent-past, there has 
been a twofold increase of the PPI data using protein interaction 
networks (PIN) while several advanced methods [2] connecting 
orthology mapping and comparative approaches have come up 
to analyze and visualize proteins. These approaches aid 
bioinformatical algorithms to discover families of proteins that 
have shared functional modules. However, bioinformatical 
methods stated as above are usually applicable when the 
protein has known functional relationship and not for those 
proteins like 'predicted' or 'similar to' or 'hypothetical.' On the 
other hand, significant experimental efforts have allowed us to 
analyze the interactions of known proteins in various 
organisms. The interactomes established so far represent  
 

 
proteins corresponding to various organisms and sometimes 
organelles. With high-throughput data still limited for the 
human proteome, genome-wide approaches have been used to 
elucidate the human interactome. However, assuming that 
functional protein interactions are conserved in evolution, one 
can consider extending the experimentally determined human 
protein interaction network by using data from protein 
interaction data-sets of the model organisms. Transferring the 
information from known interaction networks to the unknown 
have been accomplished [14] further requiring identification of 
genes that have a common ancestor and therefore share the 
same function between the orthologs. In addition, web-based 
databases such as String (http://www.string.embl.de) contain 
several thousands of predicted interactions which are 
assembled by mapping interactions from model organism to 
various orthologs using sequence similarity searches, bi-
directional and reciprocal best hit approaches. All the inferred 
interactions work on either one or two methods which contains 
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lots of false positive data. Hence there remains a challenge to 
develop efficient tools to predict and accurately define function 
to the hypothetical proteins.  
 
The orthology mapping poses a great challenge as many known 
HPs remain un-annotated even after being 'mapped to' or 
'associated' with certain known proteins. For example, a HP 
queried using a visualizer Osprey [3] would still be shown as a 
grey node (meaning unknown) and therefore remain 
unsupported. In addition, there is a challenge in analyzing huge 
data-sets of HPs as flow of operations are to be executed 
simultaneously for better protein annotation. Thanks to the 
Cloud architecture [4], the work is made simple with the data 
mapped into reduced phase. The reduced phases combine all 
the outcomes from the multiple nodes into a single outcome. 
Further, such learning algorithms can be implemented over 
multiple nodes on map-reduce framework. The data thus 
analysed can then be used to validate each parameter and 
further statistical analysis might be employed to validate the 
results. To overcome this, we have employed a six-point 
classification schema based on some set of features. Our 
classification was employed on a subset of 20 HPs that have 
been randomly considered from a group of 1455 HPs [5].  In 
employing the classification system, we ideate bona fide protein 
interactions can be determined making sensitive Protein 
Interaction Networks (PIN).   
 
Methodology: 
Six-point Classification 
Each classification is a measure of different methods, viz. Pfam 
score, orthology inference, functional linkages, back to back 
orthology for protein interactants, subcellular location and 
protein associations taken from known databases and 
visualizers. Each protein is given a value of 1 if the protein 
matches the classifier; else 0 is given against them. The 
annotation scores, based on the features are available in (Table 
1, see supplementary material). 
 
Classification 1: Pfam identities 
Score: Best Pfam scores are given as per the assignment 
returned by Pfam [6]. The Pfam-B is given value 0 and Pfam-A 
is given value 1. 
Principle: The underlying principle is that the presence of 
domains in varying combinations in different proteins tends to 
provide insights into the function of the protein. The Pfam, 
represented by multiple sequence alignments and Hidden 
Markov Models (HMMs) classifies the query into Pfam-A and 
Pfam-B. While the Pfam-A are curated and built from the seed 
alignment, the Pfam-B are lower quality sequences generated 
automatically from electronic annotation using the non-
redundant clusters. 
 
Classification 2: Orthology mapping 
Score: E value <1 were given a score of 1, else 0 
Principle: The ortholog proteins often retain similar functions, 
so a pair of orthologs that interacts in subject organism is likely 
to interact in target organism too (putative interactions in other 
organisms are called interologs). The protein sequences were 
blasted against the Arabidopsis thaliana and Non Redundant 
(NR) databases. Besides these, other organisms were also 
targeted towards hot spots for functional linkages. We 

transferred the information of the ortholog data to Arabidopsis 
thaliana, and mapped them to functional linkages.  
 
Classification 3: Functional linkages using protein interactions 
and associations 
Score: If there is an association or linkage found through 
Rosetta stone method, a score of 1 is given, else 0. 
Principle:  A protein Navigator tool [7] to check orthology pairs 
was used to predict the functional linkages linked to them: 1. 
Rosetta stone method [8] works on a rationale that two 
polypeptides X and Y in one organism are likely to interact if 
their homologs are expressed as a single polypeptide XY (which 
is called as a Rosetta Stone) in another organism. It is also likely 
that some proteins might be functionally represented as 
pathways or chemicals or simply in GO database. 2. Gene 
fusion method [9] works on the theory that pairs of monomeric 
proteins fused in other organisms tend to be functionally 
related or physically interacted. 3. Gene neighbours method 
works on the assumption that the operons of one organism may 
be conserved across other organisms. 
 
Classification 4: Back to back orthology 
Score: The associators or interactors found in classifier 3 are 
searched in query organism, if found distinctively and are 
correlated a score of 1 is given; 0, if absent. 
Principle: The interaction is linked only if the interactant 
ortholog is present in the query organism too. This is similar to 
the bi directional best blast hits. 
 
Classification 5: Presence of sorting signals and localization to 
the same organelle 
Score: If localized to the same organelle, 1 else 0. 
Principle: An approximate 50% of interactions are between the 
same organelle and rarely do we find transmembrane 
interactions. If the proteins are predicted to be localized to 
different organelle, the perchance of protein interacting to the 
query would be less. TargetP [10] was used to employ the 
subcellular location classifier. 
 
Classification 6: Presence of interactors (available through 
databases and visualizers) 
Score: 1 and 0 for presence and absence respectively 
Principle: The experimentally confirmed interacting pairs are 
documented in databases like Database of Interacting Proteins 
(DIP) [11], MINT [12], IntAct [13], thebiogrid.org [14] which 
finally are visualized using cytoscape [15] and Osprey [3]. The 
classification 3 developed on the assumption that there is 
presence of RS sequences is based on the presence of interacting 
partners from existing databases and those that we visualized 
using Osprey.  
 
Total Reliability Score (TRS) 
The total reliability score (TRS) is summation of all the scores 
employed for all the six classifiers. If the value exceeded 3, then 
we believe that the candidate is likely to have a probable 
interacting partner. The first five classifiers, viz. Pfam score, 
orthology inference, functional linkages, back to back orthology 
for protein interactants, subcellular location are based on the 
manual annotation and prediction that we have employed 
while the  protein associations/interactions are based on the 
existence of known protein interactors. A scoring schema 
similar to phylogenetic profiling of 0 and 1 for absence and 
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presence of genes respectively in an organism was employed to 
make the PIN sensitive. These scoring patterns are applicable 
either when annotation is transferred to another organism or 
when the protein is waiting to be annotated. However, the fact 
that the use of six classifiers makes this method more stringent, 
the scores are averaged into two sections, viz. the 1+2+3 
classifiers and 4+5+6 classifiers and an over all, TRS summing 
them. In employing these scoring patterns, we ideate that the 
sensitivity of the proteins based on any three or more methods 
can give better results.   
 
Evaluation of classification 
To circumvent the problem of protein annotation on current 
dataset, we further evaluated the classification scores with 
single node through learning algorithms J48 (a version of C4.5 
decision tree), SMO (a version of Support Vector Machine), 
Naive Bayesian, and Multilayer Perceptron (a version of Neural 
Network) and 22 learning algorithms [17-18]. We implemented 
WEKA machine learning package [16] (Version 3.6.4) on Cloud 
with a single node. The data-set containing the proteins over 
six-point classification scores was further modeled through 
learning algorithms with ten-fold cross validation scheme 
(Table 1, see supplementary material).  
 
Statistical analysis using Anova and Kruskalwallis 
We statistically interpreted the six-point classification metrics 
further using MATLAB [23] (Version 7.11 on a Windows 7 
desktop).  We finally tested the matrix (protein and six-point 
classifiers) using one-way analysis of variance (Anova) and 
Kruskalwallis methods.  
 

 
Figure 1: A more reliable protein-protein interaction map for 
protein accession, NP_057673.2 based on the functional 
linkages. 
 
Discussion: 
The classification scoring schema from the TRS was employed 
on the test dataset (Table 1, see supplementary material). The 
permutations and combinations of the dataset gave a valid 
protein interaction networks. For example, when the classifier 3, 
viz. functional linkages and classifier 6 were analyzed, only 4 of 
the 20 turned out to be Rosetta Stone sequences, making a 
putative and novel protein interaction map (Figure 1). We 
observe that the protein NP_057673.2, a mitochondrial protein 

is known to interact with AAM10026.1 suggesting that they 
make a bona fide interaction pairing. Further, we evaluated the 
classification scoring system using machine learning algorithms 
and statistical interpretation suggesting the fact that the 
subcellular location (sorting signals) make a very good impact 
amongst all classification features. These results demonstrate 
that the six-point classification scheme is capable of yielding an 
ultimate TRS which is capable of interpreting PIN.  From Table 
1, we get the best accuracies through data methods: ALL (MLP: 
81.08), Split (MLP: 76.92); CFS (RandomTree: 67.57), PCA (MLP: 
81.08), SVM (MLP: 78.38) using different approaches (as 
mentioned in Columns 2-6). Feature selected through InfoGain, 
ChiSquare & Probabilistic Significane and modeled by Smo-
PolyKernal algorithm yielded similar accuracy of 78.38. The 
highest among all data methods and algorithms is ALL:: 
MLP::81.08. This means all six classifiers scheme are required in 
accurate modeling of TRS. Further we derived best data sub-
sets from six classification schemes by choosing top score from 
all combination using Hill Climbing method [22]. Table 3 (see 
supplementary material) illustrates that all subset combination 
method “0 1 2 3 4 5” by MLP (81.081) and Hill selected data sub 
set “4 0” by MLP (78.378) are the best accuracies by these 
methods. This further adds to the confidence that all the six 
classification schemes helps better modeling of TRS compared 
to the sub sets. From the statistical interpretation, we used a 
matrix; whose rows are proteins and columns are different 
classifiers (Table 4, see supplementary material) and observed 
that the function returns the p-value after transforming 37-2 
degree of freedom. Covariance test further revealed that the 
data is unbiased in the covariance matrix, forming a normal 
distribution (Table 5, see supplementary material). The 
statistical results indicate that the six-point classifiers are 
uniformly useful in modeling TRS as evident from the scores 
(Anova = 8.0645e-031; kruskalwallis= 6.3123e-011; (Figures 2 
and 3). This adds to our confidence that having such 
classification schema is valid and could be extended to protein 
annotation using cloud architecture, if the dataset is larger. 
However, in order to overcome the impact of ranking all 
classifiers, we propose either unimposing a specific classifier or 
employing all classifiers. Disregarding any of the classifiers will 
yield less score for which we propose yet another classifier 
based on the total number of possible pairwise interactions and 
degree of paralogy for the fact that paralogy increases the 
number of possible interactions thereby decreasing the certainty 
of the prediction. The bottom line in this proposed classification 
is that higher the TRS, greater is the chance of the protein to be 
interacting and more reliable the functional linkage.  
 

 
Figure 2: Outcome of Anova on six-point classifiers using 
MATLAB. X-axis shows 1-6 classification schemes and TRS 
while Y-axis shows values corresponding to them. 
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Figure 3: Outcome of Kruskal_Wallis on six-point classifiers 
using MATLAB. X-axis shows 1-6 classification schemes and 
TRS while Y-axis shows values corresponding to them. 
 
Conclusions: 
A six-point classification system is proposed to solve the 
problem of hypothetical protein annotation with respect to 
interaction networks. In this work, by employing our 
classification schema, we have shown an example taking a 
protein NP_057673.2 that is known to be localized to 
mitochondria. The functional linkages through Arabidopsis 
thaliana indicate that the protein is a Rosetta Stone sequence 
with AAM10026.1 and the fact that the protein has already been 
shown to be interacting with HGS (ZFYVE8) makes 
promiscuous interaction (Table 2, see supplementary 
material). We believe with a variety of statistical interpretation 
that we put forth, our in silico selection strategy can be used to 
select the most promising candidates from a PIN. Further the 
cloud computing resources employed were quite useful in 
validating accuracies on TRS modeling through multiple 
algorithms and data sub-sets. 
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Supplementary material: 
 
Table 1: Derived accuracies on TRS by learning algorithms with default parameters set by WEKA (16) are listed above. Column 1 
lists different algorithms. Column 2 shows accuracies on the entire data through ten-fold cross validation. Column 3 shows 
accuracies on test data after a WEKA split (Train: 66%-test: 34%). Columns 4-9 shows accuracies by different algorithms after 
applying feature selection algorithms as per the column header (Cfs:Correlation Feature Selection; PCA:Principal Component 
Analysis; SVM: Attribute selection through SVM; Info:Infogain feature selection; ChiSqu:Chi_Square feature Selection; ProbSig: 
Probablistic significance feature selection; Cfs use best fit method and rest use Ranker method as set by WEKA) 
 

Algorithms /Methods ALL Split Cfs PCA SVM Info ChiSqu ProbSig 
 Dset 66%-34 bestfit ranker ranker ranker ranker ranker 
bayes_NaiveBayesUpdateable 54.05 76.92 54.05 72.97 54.05 54.05 54.05 54.05 
bayes_nbay 54.05 61.54 54.05 72.97 54.05 54.05 54.05 54.05 
function_SimpleLogistic 70.27 69.23 59.46 78.38 70.27 70.27 70.27 70.27 
functions_mlp 81.08 76.92 59.46 81.08 78.38 72.97 72.97 72.97 
functions_RBFNetwork 72.97 76.92 56.76 72.97 72.97 72.97 72.97 72.97 
functions_smo_npolyk 56.76 61.54 54.05 51.35 56.76 56.76 56.76 56.76 
functions_smo_PolyK 78.38  69.23 59.46 43.24 78.38 78.38 78.38 78.38 
functions_smo_RBFK 24.32 15.39 21.62 24.32 24.32 24.32 24.32 24.32 
lazy_IB1 70.27 69.23 56.76 72.97 70.27 70.27 70.27 70.27 
lazy_IBk 70.27 69.23 62.16 72.97 70.27 70.27 70.27 70.27 
Logistic 70.27 69.23 62.16 70.27 70.27 70.27 70.27 70.27 
misc_HyperPipes 43.24 53.85 43.24 75.68 43.24 43.24 43.24 43.24 
misc_HyperPipes 43.24 53.85 43.24 75.68 43.24 43.24 43.24 43.24 
rules_ConjunctiveRule 45.95 53.85 45.95 45.95 45.95 45.95 45.95 45.95 
rules_DecisionTable 48.65 53.85 54.05 70.27 56.76 56.76 56.76 56.76 
rules_JRip 32.43  53.85 40.54 62.16 40.54 40.54 40.54 37.84 
rules_NNge 72.97  69.23 62.16 72.97 72.97 72.97 72.97 72.97 
rules_OneR 45.95  15.39 45.95 72.97 45.95 45.95 45.95 45.95 
rules_PART 70.27 69.23 48.65 72.97 64.87 70.27 70.27 67.57 
rules_Ridor 54.05 61.54 51.35 72.97 54.05 59.46 59.46 59.46 
rules_ZeroR 24.32 15.39 24.32 24.32 24.32 24.32 24.32 24.32 
trees_DecisionStump 45.95 53.85 45.95 45.95 45.95 45.95 45.95 45.95 
trees_j48 67.57 69.23 51.35 72.97 64.87 67.57 67.57 67.57 
trees_LMT 70.27  69.23 59.46 78.38 70.27 70.27 70.27 70.27 
trees_RandomForest 70.27 69.23 64.87 75.68 70.27 70.27 70.27 64.87 
trees_RandomTree 67.57  76.92 67.57 78.38 75.68 72.97 72.97 72.97 
trees_REPTree 43.24 53.85 40.54 72.97 45.95 45.95 45.95 45.95 
 
. 

Table 2: Feature selection algorithm on classifications (6: High impact and 1: Low impact). The SVM attribute ranking method shows 
that the targeting signals (Subcellular location) is an important (from the score 6) features.  

Classifiers \ Feature Sel. Alg. SVM [21] 
Ranking 

Chi-Sq. 
Ranking 

Cfs_bestfit 
Ranking[ 

PCA [20] 
Ranking 

Prot_fam_Score 3 4 (20.477) 6 6 (0.567) 
Orthology_Score 2 3 (18.924) 5 5 (0.3642) 
Prot_int_ass_stu_Score 4 Not selected Not selected 4 (0.2105) 
Back_to_Bk_Orthology_Score 1 Not selected Not selected 3 (0.1145) 
Sorting_signal_Score 6 5 (24.126) 4 2 (0.0517) 
Known_Db_Visualizers_Score 5 6 (25.334) 3 Not selected 
 

Table 3: Accuracies on TRS by learning algorithms with default parameters set by WEKA and best data sub set by combination 
(Column3) and Hill method (column 5) are listed above. Column 1 lists different algorithms. Columns 2 & 4 lists the best data sub 
sets and Columns 3 & 5 accuracies respectively. (0:Prot_fam_Score 1:Orthology_Score 2:Prot_int_ass_stu_Score 
3:Back_to_Bk_Orthology_Score 4:Sorting_signal_Score 5:Known_Db_Visualizers_Score): 

Algorithms All best combinations Hill Climbing[22] 
  Sub-Sets  Accuracy Sub-Sets  Accuracy 
functions_mlp 0 1 2 3 4 5  81.081 4   0 78.378 
bayes_nbay 0 1 2 3 4 56.757 4   0 62.162 
lazy_IBk 0 1 2 3 4 5 70.270 4   0 59.459 
rules_PART 0 1 2 3 4 5 70.270 4   0 59.459 
trees_j48 0 1 2 3 4 5 67.568 4   0 59.459 
trees_RandomTree 0 1 2 3 4 5 67.568 4   0 59.459 
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functions_smo_npolyk 4 5 59.459 4   0 59.459 
functions_smo_PolyK 0 1 2 3 4 5 78.378 4   0 54.054 
trees_RandomForest 0 1 2 3 4 5 70.270 4   0 54.054 
functions_RBFNetwork 0 1 2 3 4 5 72.973 4   0 51.351 
rules_DecisionTable 2 3 4 5 51.351 4   0 51.351 
rules_NNge 0 1 2 3 4 78.378 5   0 48.649 
Logistic 0 1 2 3 4 5 70.270 4   0 48.649 
rules_Ridor 0 1 2 3 4 5 54.054 4   0 48.649 
function_SimpleLogistic 0 1 2 3 4 5 70.270 4 45.946 
trees_LMT 0 1 2 3 4 5 70.270 4 45.946 
bayes_NaiveBayesUpdateable 0 1 2 3 4 56.757 4 45.946 
trees_REPTree 0 1 2 3 4 51.351 4 45.946 
rules_ConjunctiveRule 0 1 2 3 45.946 4 45.946 
rules_OneR 0 1 2 3 4 45.946 4 45.946 
trees_DecisionStump 0 1 2 3 4 45.946 4 45.946 
misc_HyperPipes 0 1 2 3 4 5 43.243 4   0 40.541 
lazy_IB1 0 1 2 3 4 5 70.270 4   0 37.838 
rules_JRip 0 1 2 3 37.838 1   0 27.027 
functions_smo_RBFK 1 2 3 27.027 1   0 24.324 
rules_ZeroR 0 1 24.324 1   0 24.324 

 
Table 4:The p-values from Correlation coefficient on six-point classifiers. The correlation coefficient establishes that all the 
classifications are useful for modeling TRS: 

Classification Prot 
fam 
Score 

Ortho-logy 
Score 

Prot_int_ass 
_stu Score 

Back_to_Bk_ 
Orthology 
Score 

Sorting  
signal  
Score 

Known_Db_Visu
alizersScore 

TRS 

Prot_fam Score 1 0.3433 0.0484 0.0564 0.1479 0.3548 0.5251 
Orthology Score  1 -0.0295 0.2511 0.3874 0.5834 0.6851 
Prot_int_ass 
stu Score 

  1 0.1481 0.3045 0.0281 0.3719 

Back_to_Bk 
Orthology Score 

   1 0.6047 0.4433 0.6439 

Sorting_signal_Score     1 0.5693 0.7904 
Known_Db 
Visualizers Score 

     1 0.7858 

TRS       1 
 
Table 5: Covariance values on six-point classifiers. It is observed from the last column that each classifier is dominant with very 
higher values, except “Prot_int_ass_stu_Score” with a lesser value.  
Classification Prot 

Fam 
Score 

Ortho-logy 
Score 

Prot_int_ass_stu
_Score 

Back_to_Bk_Ortho
logy Score 

Sorting_signal 
Score 

Known_Db_Visualizers
_Score 

TRS 

Prot_famScore 0.2553 0.0863 0.0089 0.0135 0.0375 0.0908 0.4947 
Orthology Score  0.2477 -0.0054 0.0593 0.0968 0.1471 0.6359 
Prot_int_ass 
stu_Score 

  0.1333 0.0257 0.0558 0.0052 0.2532 

Back_to_Bk Orthology 
Score 

   0.2252 0.1441 0.1066 0.5698 

Sorting_signal 
Score 

    0.2523 0.1449 0.7402 

Known_Db Visualizers 
Score 

     0.2568 0.7425 

TRS  
 

     3.48 

 
 
 
 
 


