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Abstract:

The elucidation of spatial and temporal control during developmental stages is one of the central tasks for systems biology, and a
variety of intracellular factors are known as regulators for specific gene expression. The activity information of those various
factors is not directly reflected in their gene expression profiles. Hence, a method based on Structural Equation Modeling (SEM) is
described. SEM can include the latent variables within the constructed model and infer the relationships among latent and
observed variables, as a network model. An improved SEM approach for the construction of an optimal model is applied to infer
the regulatory network for the determination of C lineage fate in C. elegans development. The inferred network model shows that
the 13 analysed transcription factor genes were regulated by several other factors in addition to pal-1 expression. The other
regulatory factors are those involved in protein accumulation and localization as important regulatory factors for normal
development. Those regulatory factors were regulated sequentially in the network model. The regulation of the known pal-1
regulated genes was dependent on this sequential control of the regulatory factors. The interpretation of the network model shows
insights to the complex regulation occurring during the C lineage determination by pal-1.
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Background:

In multi-cellular organisms, asymmetric cell division and cell
differentiation are essential for normal development.
Asymmetric cell division in embryogenesis occurs to generate
body axes, and cell differentiation determines cell fate [1-3].
Through these crucial developmental periods, a cell becomes
specialized to construct tissues and organs, according to its fate
[4]. These developmental events are controlled to divide the
developmental determinants into suitable descendants [5, 6],
but much remains to be elucidated about the regulatory system
in the early embryo. Since embryogenesis is controlled spatially
and temporally, the entire regulatory system in early embryonic
development is incredibly complicated [7].
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To gain a better understanding of the role of developmental
control, a gene regulatory network is useful. The application of
various algorithms, including Boolean and Bayesian networks
and graphical Gaussian modeling (GGM), to gene expression
profiles allows us to infer complex functional gene networks [8-
11]. One of the clues toward revealing the developmental
regulation in the early embryo is to clarify the factors
influencing cell fate determination during embryogenesis. Cell
fate is usually determined in normal development, as the course
from the zygote to the complete organism. At the early stage of
development, cell fate determination is executed by the
regulated translation of stored maternal mRNAs and the
accommodation of protein activity [12, 13]. Furthermore, gene
expression control by transcription factors is also needed for cell
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fate determination and cellular differentiation [14].
Corresponding to the gene expression changes, cell fate
determination and cellular differentiation are activated during
the developmental stage. This means that there are several
types of cellular factors that regulate cell differentiation in
embryogenesis. Therefore, to reveal the regulatory networks in
embryogenesis, such as how a cell's fate is determined, a new
network inference approach is needed.

Recently, I developed a new statistical approach, based on
Structural Equation Modeling (SEM) in combination with factor
analysis and a four-step procedure [15]. I developed this
approach to reveal a serial transcriptional regulation system
mediated by transcription factor proteins, by using information
from only gene expression profiles, and no protein information.
One of the significant features of SEM is the inclusion of latent
variables into the constructed model, which allows the inferred
model to include transcription factor proteins as latent
variables, and genes as observed variables. This method
estimates the significant interactions between variables. In the
constructed model, linear relationships among variables are
assumed to minimize the differences between the fitted model
covariance matrix and the calculated sample covariance matrix.
This approach allowed me to reconstruct the hierarchical model
of transcriptional regulation that involves different cellular
components, proteins and DNA.

The clarification of cell fate determinants and their effects by
my SEM approach is considered to be useful for revealing the
developmental control occurring in the C. elegans early embryo.
In C. elegans, cell division during embryonic development, from
the zygote to all 959 somatic cells, can be traced [16]. Through
the early stages in embryogenesis, 5 founder cells, AB, MS, E, C
and D, are produced by asymmetric cell division to generate
distinct sets of somatic cells [16]. Among these founder cells, the
C blastomere mainly gives rise to muscle and epidermis, and
the cell fate of the C blastomere is regulated through a
genetically defined transcriptional cascade of activation by the
protein PAL-1 [17]. Based on previous investigations, PAL-1 is
considered to maintain the identity of the C blastomere at the
eight-cell stage in embryogenesis. The translation of the
maternal pal-1 mRNA is known to be sequentially restricted
until the four-cell stage in embryogenesis, and the C blastomere
fails to develop in the absence of maternal PAL-1 activity [7].
Furthermore, ectopic PAL-1 activity gives rise to muscle and
epidermal cells by the C-like lineage in the other somatic
lineages, in the absence of maternal PAL-1 [18].

Here, I applied the SEM approach to reveal the pal-1-mediated
regulation in embryogenesis, by using the expression profiles of
pal-1-dependent genes, which have been measured to clarify the
pal-1 effect. The PAL-1 transcription factor protein is considered
to regulate 12 other transcription factor genes, including
uncharacterized proteins, and those PAL-1 target genes have
been experimentally confirmed to affect the C-lineage
differentiation [17, 19, 20]. Even though some of the regulatory
pathways from pal-1 to its target genes have been identified, the
functional mechanisms of the pal-1 mRNA or PAL-1 protein
remain unclear. In this study, I employed an improved SEM
approach to extract the factors for cell fate determination and to
reconstruct a regulatory network model among the pal-1 target
genes. Using this method, the determinants of cell fates were
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extracted by a factor analysis. I could estimate not only the
unobserved regulators for gene expression, but also the
significant regulation pathways, from regulators to genes. The
resulting gene expression profiles revealed the well coordinated
developmental control by pal-1.

Methodology:

Expression data

I combined two early embryonic expression profiles in C.
elegans for the SEM calculation. One profile is GSE2180,
including 123 samples measured by Baugh ef al. [17], and the
other profile is GSE9665, including 74 samples measured by
Yanai et al. [19]. In both experiments, 22,625 gene expression
profiles were measured to reveal the C-lineage-specific genes.
Among them, the following 12 genes were identified as
transcription factors that are regulated by pal-1 in the C-lineage
embryo: thx-8, thx-9, elt-1, hnd-1, scrt-1, lin-26, nhr-25, vab-7, elt-3,
hih-1, unc-120 and nob-1. Furthermore, pop-1 is considered to be
associated with cell fate decision at the four-cell stage. Thus, I
analyzed the expression profiles of 14 genes, including pal-1, 12
pal-1-regulated genes and pop-1, which are considered to
function in the C-lineage embryo.

Factor Analysis

The network analysis by SEM includes two steps: parameter
fitting and model structure fitting. To assume the model
structure, I selected the optimal number of factors for inclusion
in the network model as latent variables, by performing a factor
analysis. In the factor analysis, the covariance matrix between
the observed variables ) is structurized by parameters, as
follows:

Y=Var[X] = A ® At + W2 - (1)

Where W2is the covariance matrix of error terms, A is the factor
loading matrix of latent variables, and ® is the covariance
matrix among factors. From this structurized matrix, the values
of matrix A and the variances of the error terms are estimated.
In this study, the Kaiser criterion states and the scree plot were
utilized to estimate a number of factors. In the Kaiser criterion,
the number of factors is equal to the number of eigen values of
the covariance matrix that are greater than one. The number of
latent variables was suggested by a principal factor method
with varimax rotation, which is a general method for rotating
factors to fit a hypothesized structure of latent variables.

Structural Equation Modeling (SEM)
In this study, the regulatory model is defined as follows:

y=An+Ty+¢ — (2

Here, y is a vector of p observed variables (genes), and nis a
vector of g latent variables (regulatory factors). The
effectiveness of the factors to the genes is represented by A ',
and the relationships between the genes are represented by T ,
as matrix forms. Errors that affect genes are denoted byg .
According to this model definition, the model covariance matrix
) (9) is represented by parameters. In the SEM analysis, the
parameter estimation was performed by comparing the actual
covariance matrix 2 , calculated from the measured data, with
the estimated covariance matrix X (9) of the constructed model.
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I used the maximum likelihood method as a fitting function to
estimate the model parameters. The SEM software package
SPSS AMOS 17.0 (IBM, USA) was used to fit the model to the
data.

Iterations for the Optimal Model

The constructed models are evaluated by their structures, in
comparison to the measured data. To detect the quantitative
similarity between a constructed model and an actual
relationship, fitting scores are usually utilized. By using these
scores, I developed an iteration algorithm to optimize the
model, as follows:

Step 1: Reconstruction of the network model without a non-
significant edge; Step 2: Re-calculation of all parameters from
the reconstructed model; Step 3: Iteration of Steps 1 and 2 until
all edges become significant; Step 4: Addition of a possible
causal edge to the reconstructed model by the Modification
Index (MI); Step 5: Iteration from Steps 1 to 3 to confirm that the
other edges in the model are significant; Step 6: Determination
of significant relationships among error terms.

The MI measures how much the chi-square statistic is expected
to decrease if a particular parameter setting is constrained. After
all of the edges are significant and all of the MI scores are lower
than 10.0 in the constructed model, the significant relationships
between the error terms are estimated by the MI scores. The
relationships among the error terms have no direction, and thus
they are a correlation between error terms. These relationships
were used for the calculations, but were not incorporated into
the network.

Fl ‘hnd-l thr—ZS ‘ ‘tbx—9 ‘ ‘pop-] |
[
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63.843 57 0.249  0.957 0.92 0.995

RMSEA
0.025

scores

Figure 1: Inferred network model of pal-1 regulation. The
estimated network structure of the pal-1 regulatory system
shows for lineage-specific differentiation. Genes, which are
observed variables, are displayed as rectangles, and estimated
regulatory factors, which are latent variables, are displayed as
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circles. Arrows show the causal relationships among the
variables in the model. Error terms are omitted in this figure,
but all error terms were calculated by SEM. The relationships
between the errors are considered to represent other regulatory
systems in the cell. For simplicity, these relationships are not
shown. (a) Network model between genes and regulatory
factors; (b) Relationships between pal-1-dependent genes. Each
gene is classified by its regulatory factor, shown on the left side;
(c) Goodness-of-fit scores. The calculations for these scores
included the relationships between errors. Four criteria were
mainly used: GFI>0.90, AGFI>0.90, CFI >0.90 and RMSEA<0.05.
All four scores indicated that the model fit the measured data
well.

Discussion:

Regulatory factors of pal-1 regulated genes

To reveal the regulatory network in early embryogenesis, I first
detected the intracellular regulatory factors for gene expression.
In this study, 14 genes are described as observed variables, and
the regulatory factors are arranged as latent variables in the
network model. I utilized factor analysis to reveal the
underlying structure among the variables. First, exploratory
factor analysis (EFA) was applied to detect the number of
regulatory factors for the expression of the 14 genes, since EFA
is commonly used for identifying the set of latent variables with
effects on the observed variables.

From the compiled expression profiles of the 14 genes
measured under 197 conditions, 4 regulatory factors were
extracted by the first EFA. To clarify the percent of variance in
each gene explained by the extracted factors, the communality
of each gene was calculated from the sum of the squared factor
loading for all factors. According to the first EFA, the
communality of pal-1 was lower than 0.1, and this may be
interpreted as meaning that pal-1 expression was not affected by
the regulatory factors. In this study, pal-1 is considered as an
initiator of the C-lineage, and thus independent pal-1 expression
was reasonable.

I applied the second EFA to the expression profiles of 13 genes
without pal-1, and 3 factors were extracted. The communality
and factor loading of each factor are displayed in Table 1(see
supplementary material). In Table 1, the genes are divided into
three clusters according to their factor loading: the genes mainly
regulated by factor 1 (F1), the genes mainly regulated by factor
2 (F2), and the genes mainly regulated by factor 3 (F3). Table 1
also shows the stage at which each gene was detected, which
was empirically confirmed by Yanai et al. [19]. The genes that
had been detected as initiators of the C-lineage, tbx-8 and tbx-9,
were regulated by F1. Furthermore, elt-1 and scrt-1, which were
detected at the early stage in embryogenesis, were also
regulated by the same factor. The genes that were mainly
regulated by F2 were also detected at an early stage in cell
division, but not as initiators. From these features, F1 and F2
may be regulators that function at an early stage of
embryogenesis. A focus on the detected cell type of each gene
indicated that F3 regulates all of the genes that were detected as
only epidermal. Even though one muscle gene was also
regulated by F3, this muscle gene was detected at a later stage
in embryogenesis. Thus, the features of F3 are considered to be
different from those of the other factors.
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Regulatory networks for C lineage fate

Before the SEM calculation, I assumed an initial model that
includes both the latent and observed variables. The restrictions
of the initial model were determined as follows: 1) three latent
variables were arranged as the effective regulatory factors of 13
TF genes, 2) regulatory relationships were assumed from the
latent variables to the observed variables, depending on the
values of the factor loadings, and 3) the observed variable pal-1
was arranged at the starting point in the initial model, since pal-
1 is considered to be an initiator of the C-lineage fate in this
study. With these restrictions, I applied the modified four-step
procedure developed in my previous investigation [15], and an
initial model was constructed with pal-1 and the other TF genes
connected by latent variables. All possible regulatory patterns
between pal-1 and the three latent variables were evaluated by
SEM, and the optimal regulatory model was selected as the
most suitable network shape for expression profiles.

The inferred network is shown in (Figure 1). By my iteration
steps developed for model optimization, all edges within the
model were significant (p<0.05). The causalities between the
factors and the genes are shown in (Figure 1a), and the
relationships among the genes are shown in Figure 1b. It is
known that Ilin-26 and hnd-1 repress nhr-25 and hlh-1,
respectively [19], and those known regulatory relationships
were well described in (Figure 1b). The regression weight
between lin-26 and hnd-1 and that between hnd-1 and hih-1 were
estimated as negative values, which means repression control.
To evaluate the model fitting, I utilized general goodness-of-fit
scores, as follows: goodness-of-fit index (GFI), adjusted GFI
(AGFI), CFI, and RMSEA. These indices have threshold values
as criteria to decide whether the model is suited to the
measured data, and Figure 1c shows that all of the indices
indicated that the inferred model is suited to the expression
data.

In (Figure 1a), the three latent variables are regulated
sequentially, and almost all of the early embryo genes were
regulated by the first latent variable, F1. The factors were
expected to be regulated by pal-1, such as encoding, maternal
mRNA division, protein activity by accumulation, and so on.
Thereby, the three factors were interpreted by regulatory orders
in the resulting model. Figure 2 shows the interpretation of the
latent variables. Factor F1 was considered to be the quantity of
the PAL-1 protein, since it is only regulated by the pal-1 mRNA,
and thus the regulatory relationships between pal-1 and F1 were
considered as "translation". Factor F2 was only regulated by F1,
and it regulated early embryonic genes and other genes.
Sequential restriction of PAL-1 activity is known to occur, and
thus F2 was interpreted as the PAL-1 activity that was
dependent on the blastomere. Factor F3 was regulated by pal-1
and F2, and F3 mainly regulated epidermal genes. All of the F3
regulated genes were detected when the C blastomere divides
into 31 cells, even though the other genes were detected at the
former stage in cell differentiation, Thus, F3 was considered as a
regulator functioning after cell division. Actually, the pal-1
mRNA is known to be partitioned into daughter cells during
cell differentiation. Thus, the causality between pal-1 and F3
was estimated as mRNA segregation, and F3 was considered as
the localization for pal-1 spatial control.
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Figure 2: Biological interpretation of the inferred model.
Biological interpretations of regulatory factors are expressed
within the network. All genes are displayed as rectangles, and
the color of the gene name indicates the detected cell type or
developmental phase in embryogenesis: Green: Early embryo,
Red: Muscle cell, Blue: Epidermal cell and Black: Both muscle
and epidermal cells. The pal-1 rectangle indicates the quantity of
pal-1 mRNA, and thus the first regulatory factor is considered to
be the PAL-1 protein. From the sequential regulation of the
regulatory factors, all factors and relationships were
interpreted.

Conclusion:

In normal development, genes are regulated by many factors;
however, the ambiguity of the underlying mechanisms is one of
the serious obstacles to artificial cell differentiation. SEM is a
powerful approach to estimate the gene regulatory network in
cell differentiation. The spatial and temporal control
mechanisms of pal-1 have been solved by my inferred network,
since SEM is a useful method for constructing a regulatory
network including unknown factors. The inferred network
shapes reflect the features of cell fate determination for the C
lineage, which is regulated by pal-1. The effects of protein
accumulation and localization were suggested as latent
variables in addition to PAL-1 regulation in the inferred model.
SEM will be applicable to a wide number of gene networks, to
clarify the control of gene expression by intracellular factors as
biological data gets accumulated. The ability to identify
expression profiles and the corresponding biological functions
is expected to provide applications for SEM for the inference of
regulatory mechanisms in cell differentiation.
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Supplementary material:

Table 1: Relationships among estimated factors and stage-specific expressio
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Factor loading

Detected stage

Gene Communality Factor1 (F1) Factor2 (F2) Factor 3 (F3) Epidermal Muscle  Early embryo
thx-8 .858 .857 -.350 .022 O(initiator)
thx-9 .831 -.656 .631 -.043 O(initiator)
elt-1 495 .682 150 -.082 0O O
unc-120 .647 754 -.278 -.041 e
scrt-1 311 .556 -.036 .009 @) @) @)
vab-7 775 -.590 175 267 0O 0O
nob-1 450 .674 -.563 -.055 O O
pop-1 .597 493 -.586 107 @) @)
hnd-1 750 .002 .866 -.017 0O
hlh-1 466 -.343 -.024 590 O
lin-26 732 -.018 .289 .805 O
nhr-25 415 -125 133 -.618 0O
elt-3 413 -.060 -.096 .633 O

Communality indicates the percent of variance in each gene, explained by the factors. Factor loading is the correlation coefficients
between genes and factors. The red-colored number indicates the highest absolute value for each gene. The "detected stage"
indicates the gene detected in the cell type and the developmental phase in embryogenesis. The detected stages were described in
Yanai et al. [19].
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