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Abstract: 
Many genome-scale studies in molecular biology deliver results in the form of a ranked list of gene names, accordingly to some 
scoring method. There is always the question how many top-ranked genes to consider for further analysis, for example, in order 
creating a diagnostic or predictive gene signature for a disease. This question is usually approached from a statistical point of view, 
without considering any biological properties of top-ranked genes or how they are related to each other functionally. Here we 
suggest a new method for selecting a number of genes in a ranked gene list such that this set forms the Optimally Functionally 
Enriched Network (OFTEN), formed by known physical interactions between genes or their products. The method allows 
associating a network with the gene list, providing easier interpretation of the results and classifying the genes or proteins 
accordingly to their position in the resulting network. We demonstrate the method on four breast cancer datasets and show that 1) 
the resulting gene signatures are more reproducible from one dataset to another compared to standard statistical procedures and 2) 
the overlap of these signatures has significant prognostic potential. The method is implemented in BiNoM Cytoscape plugin 
(http://binom.curie.fr). 
 
 

 
Background:  
The most common result of analysis of high-throughput data in 
molecular biology represents a global list of genes, ranked 
accordingly to a certain score. The score can be a measure of 
differential expression, distance from a cluster center, 
contribution to a classifier or any other score. Many methods 
were developed for estimating a statistically justified threshold 
for the score value used to select a number of top-scored genes, 
using purely statistical approach without taking into account 
the functional relations between genes, such as physical 
interactions between their products. The derived in this way 
gene signatures are used, for example, for predicting outcome 
of treatment in cancer therapies [1-4]. A predictive signature is 
capable to give a prognosis on whether a patient will develop 
metastases or not after the surgery and chemio-, radio- or other 
forms of adjuvant therapies. One of the major problems with 
computing predictive gene signatures is in observation that 
various signatures obtained on different cohorts of patients 
studied in similar conditions, but in different hospitals, have 

little overlap [5]. This reduces their cognitive value since one 
can not claim that the genes selected for the signature represent 
molecules driving the disease.  
 
Several efforts have been made in attempt to take into account 
physical interactions between gene products at the top of the 
ranked list of genes. For example, in [6] network signatures of 
breast cancer metastases were derived using protein-protein 
interaction (PPI) database in combination with differential gene 
expression values. Various machine learning frameworks were 
developed in order to include network information into the 
analysis of gene expression data [7-9]. Several attempts of meta-
analysis of gene signatures were made for multiple cancer 
studies [10, 11] and for breast cancer in particular [12, 13], 
finding recurrent patterns appearing in them (for example, the 
role of proliferation, RNA splicing, immune response genes). 
Here we suggest a new method, called Optimally Functionnaly 
Enriched Network (OFTEN) for associating a ranked list of 
genes with a network of protein-protein interactions. The genes 
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forming this network are not necessary the most top-ranked 
genes in the list, but they represent a compact functionally 
related group of genes having relatively high scores. 
 
OFTEN-analysis is inspired by the idea of percolation in graph 
theory. Given a connected graph and k randomly selected 
nodes, one may estimate the expected size of the largest 
connected component formed by these genes. For many type of 
graphs, the typical behavior is the following: at some critical kcrit 
number of nodes, most of them start to be connected in a large 
connected component. Our own estimation of the critical value 
kcrit for the graph of protein-protein interactions of the Human 
Protein Reference Database (HPRD) [14] approximately equals 
1500 nodes. This means that if the first k << kcrit  top-ranke genes 
form a relatively large connected component (compared to the 
randomly expected), their distribution on the graph of protein-
protein interactions is highly non-random and they form a 
tightly connected functional group. We estimate the statistical 
significance of appearance of such a connected component, 
using proper random sampling strategy which conserves the 
degree distribution of the selected genes in the PPI network. 
 
Finding OFTEN network associated with a ranked list of genes 
allows solving two important problems: (1) Detect the optimal 
number of genes to select based on their distribution in the 
global PPI network; (2) Detect the functional “core” at the top of 
the ranked list of genes which, however, not necessarily formed 
by the most ranked genes (which can be located at the very top 
because of pecularities of the statistical method or 
irreproducible features of biological sample collection). As a 
result, we expect OFTEN networks obtained for datase 
representing independent cohorts of patients to be more 
reproducible than the gene signatures obtained by naive 
selection of the most top-ranked genes. We show that this is the 
case using four independent breast cancer datasets and 
computing ranked lists of differentially expressed genes 
between the therapeutic success (absence of metastases and 
death from cancer in 5 years after the treatment) and the 
therapeutic failure (appearance of metastases and/or death 
from cancer in the first 5 years after the treament). 
 
Our meta-analysis is based on finding the overlap between 
OFTEN networks found in independent datasets and provides 
a highly reproducible network which contains many known 
cancer driver genes involved in developing metastases and also 
new genes which are “guilty by association” in malignant 
tumorigenesis. We believe that this META-OFTEN network is a 
valuable tool for interpreting predictive gene signatures of 
breast cancer treatment. 
 
Methodology: 
Four publicly available microarray gene expression datasets 
(GSE1456, GSE2034, GSE2990, GSE3494) were used to compute 
the ranked lists of differentially expressed genes between those 
tumours that developed metastases and those that did not in 
five years following the treatment. In one dataset (GSE3494), 
only the survival clinical data were available. In this case, we 
assumed that the death caused by cancer was the result of 
appearance of metastases: an assumption which is justified by 
high co-occurence between 5-years survival and 5-years 
appearance of metastases: an assumption which is justified by 
high co-occurence between 5-years survival and 5-years 

apperance of metastases in two other datasets where boht data 
were available. We used HPRD version 9 database as a source 
of protein-protein interactions in human cells. For constructing 
the interaction graph, we used all binary protein interaction 
part of the database. In addition, the protein relations inside 
protein complexes were used. A complex was represented as a 
full clique of interactions between its components which added 
additional 9% of connections to the graph. The largest complex 
with id=COM_2971 was excluded from the database because of 
its anomalously big size. The whole interaction graph was 
prepared as a file which can be imported into Cytoscape 
software [15].  
 
OFTEN analysis  

1) For k top-ranked genes, we map them on the interaction graph. 
Let us assume that k’ of them are found in the interaction graph. 
All connections between them are extracted, forming a 
subnetwork. (1) The largest connected component is extracted 
from the subnetwork and its size C(k’) is recorded; (2) k’ genes 
are randomly sampled from HPRD preserving the connectivity 
distribution of the k’ genes from the ranked list. R(k’) is the size 
of the largest connected component; (3) Step 3 is repeated 10000 
times. As a result, the following percolation score is computed, 
S = (1/k’)(C(k’)-Mean(R(k’))), where Mean(R(k’)) is the mean 
value of the randomly formed largest connected component 
size; (4) Steps 1-3 are repeated for a range of values of k, and kopt 
is estimated, which corresponds to the end of the plateau after 
which the score goes down (Figure 1A); (5) OFTEN network is 
the largest connected component of a subnetwork formed by 
kopt top-ranked genes; (6) OFTEN analysis is implemented as a 
part of BiNoM Cytoscape plugin [16]. Example of the S(k) 
dependence for one of the dataset is shown in (Figure 1).  

2)  
3) Four OFTEN networks were constructed for the datasets 

described earlier. The META-OFTEN network is formed by 
those nodes which appear at least in two OFTEN networks out 
of four (Figure 1B). Genes of the META-OFTEN network were 
used to derive a simple score to predict development of 
metastases in unsupervised manner, as in [17]. We computed 
the first principal component of gene expression data matrix, 
using the META-OFTEN genes. The risk of metastases risk 
score for a sample is the contribution of this sample to the first 
principal component. The patients were separated in three 
groups, with low, intermediate and high score values. Kaplan-
Meyer survival curves for these three groups for the GSE2034 
dataset are shown in (Figure 1C).  
 
Discussion: 
OFTEN networks represent the functional “cores” found in the 
ranked lists of differentially expressed genes. We can say this, 
because interaction between gene products or their 
participation in the same complex is a natural indicator of 
functional proximity. Unlike the standard enrichment analysis, 
the OFTEN network does not use pre-defined borders of 
pathways and ontology gene sets but uses the whole global 
protein-protein interaction network. OFTEN-analysis 
automatically detects the optimal number of genes to select 
from the ranked gene list. 
 
Four OFTEN networks computed for four independent breast 
cancer datasets show significant overlap: in average, 65% of 
nodes of each OFTEN network are found in at least one another 
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OFTEN and 25% of nodes are found in at least two others 
OFTENs. Gene signatures extracted from the lists of 
differentially expressed genes using the standard statistical 
approach usually show much more modest overlap (not more 
than few percents, see [5]). For example, in our analysis there 
are only 2 genes (RACGAP1 and RRM2) found in common 

between the top 100 (average size of the extracted OFTEN 
network) differentially expressed genes, and another 4 genes 
(DTL, NEK2, UBE2S and ZWINT) are found in at least three 
datasets. 
 

 
Figure 1: OFTEN analysis and META-OFTEN network of genes differentially expressed between metastatic and non-metastatic 
patient samples. A) Example of the percolation score S behavior with respect to the number of chosen top-ranked differentially 
expressed genes (GSE2034 dataset). B) META-OFTEN network constructed for four breast cancer datasets. Different edge types 
correspond to different evidences of protein-protein interactions as described in HPRD. Color shows average t-test values over 
those datasets where the gene is included in OFTEN network. Size of the node signifies the number of OFTEN networks in which 
the gene is found: small circles correspond to two datasets, average – to three, big nodes appear in all four datasets. C) Survival 
analysis made on the genes of the network, using unsupervised scoring strategy. The plot shows percentage of metastases-free 
survival for three groups of patients: with high, intermediate (within one standard deviation around the mean value) and low score 
values. 
 
Nodes of the META-OFTEN network are organized into several 
functional subgroups, represented by network modules and 
containing many genes known to be implicated in 
tumorigenesis. The most evident component, as expected, is 
related to the regulation of cell cycle, especially in its G2 and M 
phases: CDK1, CCNB1/2, CCNA2, CDKN3, CDC20, AURKA 
are the classical cell cycle genes mentioned as frequent 
components of prognostic breast cancer signatures [12]. In the 
same component one can find various genes involved in cell 
cycle checkpoints and DNA replication such as MAD2L1, 
BUB1B, TOP2A, RRM2, PTTG1, MCM2/6. Most of the genes in 
the central cell-cycle related component are upregulated in 
metastatic tumours, indicating at more intense proliferation. At  
 

the same time, few genes are downregulated such as potential 
tumour suppressor and cell motility regulator STARD13 and 
two genes MEF2C and ITPR1 whose role in breast cancer is not 
yet well-established (however, they have known associations 
with other genetically transmitted disorders).  
 
Another component, connected to the central one through 
BIRC5 protein (regulator of apoptosis) contains many stress-
response genes, in particular, related to heat-chock response 
(HSP90AA1, HSPA4, STIP1), nuclear receptor signaling 
(NR3C1, KPNA2, SMARCA4), redox reactions (TXN, TXNIP), 
various regulators of transcription and epigenetic regulation 
(RUNX1T1, STAT5B, TCF4, ID1). The role of many of these 
genes in tumorigenesis is not yet clearly established though few 
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are known to be associated with breast cancer (such as ID1 and 
STAT5B). Another component of the META-OFTEN network 
contains only downregulated components of the major 
histocompatibility complex (CD74 and various HLA-genes) 
responsible for presenting antigens to the immune system. 
Apparently, this indicates an importance of escaping immune  
response by tumor cells during distant tissue invasion: 
however, this mechnism seems not to be well characterized. 
Recently, CD74 was suggested as a promising therapeutic target 
for cancer treatment [18]. 
 
A rather misterious component of META-OFTEN contains 
upregulated genes PRPF40A and U2AF2, and downregulated 
GAS7, PECAM1, MECP2 and INPP5D. Some of these genes are 
expressed only in hematopoetic cells, and many are involved in 
blood cell differentiation and migration. The role of this 
component in metastasation is obscure. The remaining 
components are small ones and represent some single 
reproducible interactions and individual genes. Among the 
most reproducible, there is involved in cytokinesis interaction 
between PRC1 and RACGAP1. Nodes of the META-OFTEN 
network can be ranked with respect to their role in forming the 
structure of the graph. For example, genes CCNB2, TPX2, CD74 
have the highest relative connectivity (ratio of the connectivity 
in the network and the global connectivity in the global PPI 
network [19]), while CDK1, HSP90AA1, BIRC5 have the highest 
inbetweenness values (they can be classified as “routers” or 
“bottlenecks” as in [9]). 
 
The survival analysis we have performed, using the META-
OFTEN genes and the score from unsupervised analysis, shows 
that the set of genes in the network has significant prognostic 
potential. For example, if the same score as ours is derived from 
the set of 70-gene signature by van't Veer [1], then the META-
OFTEN set shows clear superiority. Comparison with other 
survival curves for multiple prognostic signatures [12] shows 
that it is also competitive with more elaborated supervised 
procedures. 
 
Conclusion: 
The main contribution of this paper is a method allowing to 
associate a network of molecular interactions with a ranked list 
of genes, called OFTEN-analysis. The analysis allows finding a 
functional core of a set of genes located at the top of the list but 
not necessarily formed by the most top-ranked genes. An 
advantage of the method is in that it does not use any pre-
defined pathway or ontology bordersin the global PPI network. 
This is why OFTEN is more informative than the standard 
enrichment analysis and can lead to the discovery of not yet 
known molecular mechanisms. OFTEN-analysis can become a 
standard tool in high-throughput data analysis in molecular 
biology: therefore, we have implemented it in BiNoM 
Cytoscape plugin [16]. OFTEN-analysis can be applied to a 
ranked list of genes which can be produced by any type of 

statistical methods (for example, from Principal Component 
Analysis or regression). 
 
We applied the method to four ranked gene lists produced from 
analysis of differential gene expression between metastatic and 
non-metastatic breast tumours. We show that the sets of genes 
forming OFTENs are characterized by larger overlap than the 
sets of the most differentially expressed genes. We derive a 
META-OFTEN network representing the most reproducible 
part of four OFTENs and show that it contains known cancer 
and metastases driver genes as well as new mechanisms whose 
role in metastatic development is to be understood. We show 
that the genes of the META-OFTEN network compose a gene 
signature with significant prognostic value. 
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