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Abstract: 
Gene co-expression networks (GCN), built using high-throughput gene expression data are fundamental aspects of systems 
biology. The main aims of this study were to compare two popular approaches to building and analysing GCN. We use real ovine 
microarray transcriptomics datasets representing four different treatments with Metyrapone, an inhibitor of cortisol biosynthesis. 
We conducted several microarray quality control checks before applying GCN methods to filtered datasets. Then we compared the 
outputs of two methods using connectivity as a criterion, as it measures how well a node (gene) is connected within a network. The 
two GCN construction methods used were, Weighted Gene Co-expression Network Analysis (WGCNA) and Partial Correlation 
and Information Theory (PCIT) methods. Nodes were ranked based on their connectivity measures in each of the four different 
networks created by WGCNA and PCIT and node ranks in two methods were compared to identify those nodes which are highly 
differentially ranked (HDR). A total of 1,017 HDR nodes were identified across one or more of four networks. We investigated 
HDR nodes by gene enrichment analyses in relation to their biological relevance to phenotypes.  We observed that, in contrast to 
WGCNA method, PCIT algorithm removes many of the edges of the most highly interconnected nodes. Removal of edges of most 
highly connected nodes or hub genes will have consequences for downstream analyses and biological interpretations. In general, 
for large GCN construction (with > 20000 genes) access to large computer clusters, particularly those with larger amounts of shared 
memory is recommended. 
 
 

 
Background: 
Gene networks can be described in a rather abstract way: They 
consist of genes (nodes) connected to other genes by edges. The 
edges represent a relationship between the two genes they 
connect in a network of genes. This abstract nature of networks 
means that they have found a wide variety of applications in 
(systems) biology [1-5]. The construction of a network begins by 
defining the nodes to be part of the network and then 
establishing edges, which may be weighted, between relevant 
nodes. Edges are established by using some sort of 

measurement (e.g. a correlation metric) taken between two 
nodes.  
 
A network exhibiting scale-free topology has most nodes 
connected to a small number of other nodes (i.e. less 
connectivity), but has a small number of nodes which are 
connected to many nodes (i.e. high connectivity). These highly 
connected nodes are often referred to as hubs. One property of 
such networks is their robustness to random perturbation or 
deletion of nodes, since most are only connected to a few other 
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nodes [11]. On the flip-side, the hubs are essential to maintain 
the structure/topology of the network and targeted deletion of 
these nodes has major impacts on the network. If a hub gene 
becomes dysfunctional, then the network will be severely 
perturbed and may result in a disease state [5, 7]. While the 
hubs in a network are essential to biological function, there are 
other important structures existing in a network. For example, 
sets of nodes that are highly interconnected with each other but 
poorly connected to the rest of the network. We call these 
modules, but they are also known in the literature as dense 
subgraphs or communities, and are important for helping us to 
better understand the structure and function of the network [8, 
9].  
 
Gene co-expression networks (GCN) are a way to model data 
from gene expression microarray or RNAseq experiments. 
Nodes are the transcripts, edge weights are a measure of how 
strongly the expression levels of the two transcripts/nodes are 
co-expressed across a series of treatments and are typically the 
absolute Pearson correlation coefficients. A co-expression 
measure is biologically interesting to study since two genes 
whose transcript levels rise and fall together across a series of 
samples might be under a common control mechanism such as 
a transcription factor or other regulatory machinery. The GCN 
are increasingly becoming important in integrative genetics and 
systems biology approaches that aim to detect causal genes and 
their networks [5, 10-12].  
 
The main objective of this study was to compare two common 
categories of GCN construction methods, with respect to 
detecting and keeping highly interconnected hub genes in the 
GCN, using connectivity as a criterion. One method is called, 
Weighted Gene Co-expression Network Analysis (WGCNA) 
and is thoroughly discussed in the original paper of Zhang and 
Horvath [7], an R package is also available for performing these 
analyses [11]. Since its first publication by Zhang and Horvath 
[7], the WGCNA method has been refined, standardized and 
now widely used in the construction of gene co-expression 
networks in many different species [5, 12]. The other method is 
called, Partial correlation and an information theory (PCIT) and 
full details of the PCIT algorithm are provided in Reverter and 
Chan [13] and an R package implementing the algorithm is also 
available in Watson-Haigh et al. [14]. PCIT is a method used to 
identify spurious edges for removal and is a data driven 
approach.  We have provided some details of WGCNA and 
PCIT methods in Supplementary file. 
 
For comparison of methods, we use real microarray datasets 
from our fetal sheep skin transcriptomics experiment.  The 
rationale for this experiment was that the density of Merino 
wool follicles is established early in fetal development and this 
commercially important trait dictates wool fibre diameter, 
which is the key driver of the price paid for wool. It has been 
shown that Merino lambs exposed to metyrapone, an inhibitor 
of cortisol synthesis, in utero show a lifetime alteration in wool 
growth parameters. McDowall et al. [conference 
presentation/paper] performed a microarray gene expression 
experiment in an attempt to elucidate the genes responsible for 
initiating primary wool follicles (between days 55-65 of 
gestation). We use the microarray gene expression data from 
this experiment to compare the two GCN methods. 
 

Methodology: 
Microarray data quality control and analyses 
The microarray experimental design and generation of 
transcriptomics data across 4 different experimental conditions 
are given in the Table 1 (see supplementary material). All 
microarray data analyses were performed in the R statistical 
programming environment, using BioConductor programs. 
Several quality control (QC) steps were used to ensure that 
there were no gross anomalies with the technical aspects of 
hybridization [15]. The identification of differentially expressed 
(DE) genes was achieved using the limma package while 
GOEAST package was used to identify gene ontology (GO) 
terms enriched in a list of DE genes. See supplementary file for 
additional results from microarray data quality control and 
exploratory analyses. 
 
Building gene co-expression networks 
Ten gene co-expression networks (GCN) were created, a 
WGCNA and PCIT derived network for each of the following: 
D60 (day 60 samples); D67 (day 67 samples); Treated 
(Metyrapone samples); Control (control samples) and ALL (all 
samples). For each network, Pearson correlations were 
calculated for all pairs of transcripts and used as the basis for 
building the networks. Of the 24,072 probe sets on the array, 
10,561 were excluded due to low mean expression (≤ 2.5 on the 
log2 scale) or low variance (≤ 0.001) across all 16 arrays, leaving 
13,511 genes from which to calculate Pearson correlations.  
 
In the WGCNA approach, a power adjacency function was 
applied to the absolute Pearson correlation matrices. The value 
of the power adjacency function’s exponent (β) was chosen 
using the scale-free topology criterion. We chose β in the 
interval (1, 11) which maximized the scale-free topology fit (R2 
≥0.85) while maintaining a high mean connectivity. In the PCIT 
approach, we applied the PCIT algorithm to the Pearson 
correlation matrices using the PCIT R package [14] to identify 
and delete edges found to be insignificant by the algorithm [13]. 
We define the adjacency matrix by using the absolute value of 
the remaining edge weights (Pearson correlations). 
 
The WGCNA approach created a Topological Overlap Measure 
(TOM) using gene expression data. The TOM is a generalized 
measure of the common edges for those two nodes in a network 
share [16]. It has been shown to be useful in biological networks 
[17] and takes values in the interval (0,1). A TOM based 
dissimilarity measure (1-TOM) can be used as input to average 
linkage hierarchical clustering. Modules can be defined as 
discrete branches in the clustering tree and can be formally 
defined by applying a tree cutting algorithm to it [11]. We do 
not formally define modules by using tree cutting, instead we 
use TOM plots to visualize the interconnectedness of nodes in 
the network.  
 
We defined highly differentially ranked (HDR) nodes based on 
first computing the connectivity (k) of the ith gene (ki). Then 
ranks of the node connectivities (coded in ascending order as 
1,2,3,…) are computed for each method. Then we compared the 
ranks to identify those which are highly differentially ranked 
(HDR) between WGCNA and PCIT derived networks. See 
supplementary file for calculations of ki and HDR. 
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Figure 1: Plots relevant to the All, Control, Treatment, D60 and D67 networks (columns). Top row: TOM plots for the WGCNA 
networks. Heat maps shows the level of topological overlap as measured by TOM, where dark red/orange represents a higher 
level of overlap between pairs of nodes in the network. Modules can be defined using the dark red/orange squares along the 
diagonal. Red bars above and to the left of each heat map indicate the location of the highly differentially ranked (HDR) nodes. All 
HDR nodes identified from all the networks are show in the ALL network TOM plot. Middle row: Frequency distributions of all 
Pearson correlations (grey) used to generate the networks and those edges remaining following PCIT (red). Bottom row: Plots of 
ranked connectivity’s calculated from the PCIT and WGCNA derived networks. Data points are semi-transparent, thus dense 
regions of points appear as dark areas. Green dashed line is the line of equality. HDR nodes are shown in red, with all 1,017 
indicated in the connectivity rank plot for the ALL network. 
 
Results and Discussion: 
Constructed gene networks 
Of the 24,072 genes present on the array, 13,511 were identified 
for network construction by applying the mean and variance 
filters, described above, across all 16 microarray samples. With 
WGCNA that uses the scale-free topology criterion, we found 
coefficients of β for the power adjacency function to be 3, 7, 11, 
8 and 6 for the ALL, Control, Treatment, D60 and D67 networks 
respectively. Mean connectivity for these networks were 518, 
319, 153, 185 and 561 respectively. TOM plots showed clear 
modular structures present in all networks (Figure 1 top row). 
In one of the D67 network we have identified a module of 267 
genes, some of which is known to be involved in wool follicle 
development Table 2 (see supplementary material). In 
particular BMP4 is expressed around the time of secondary-
derived follicles which give Merinos their distinctive fleece. 
 
With PCIT, many edges were identified as insignificant and 
deleted by PCIT (Figure 1 middle row) leaving a much sparser 

network with 2.76%, 3.07%, 3.14%, 3.11% and 2.77% edges with 
absolute weights of ≥0.49, 0.66, 0.66, 0.63 and 0.69 for the ALL, 
Control, Treatment, D60 and D67 networks respectively. 
 
Highly differentially ranked (HDR) nodes 
For the ALL network, the Spearmans rank correlation 
coefficient for connectivity is high (0.94) indicating a broad level 
of agreement between the connectivity ranks of nodes in the 
WCNA and PCIT derived networks. There is some 
disagreement among middle ranking nodes as seen by the 
departure from the line of equality (y=x), but highly and lowly 
connected nodes are similarly ranked in the WGCNA and PCIT 
derived networks (Figure 1 bottom row). Therefore, one may 
conclude that both approaches rank nodes, by connectivity, 
approximately equally. This is especially true when looking at 
the most highly connected nodes (hubs) which are always 
ranked highly. However, the connectivity ranks for the Control, 
Treatment, D60 and D67 networks show a different story 
(Figure 1 bottom row). They show reasonable agreement in 
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rank for most nodes with Spearman rank correlation 
coefficients of 0.79, 0.66, 0.81 and 0.78 for the Control, 
Treatment, D60 and D67 networks respectively. However, a 
small number of nodes (n=357 for the Control network; n=370 
for the Treatment network; n=251 for the D60 network and 
n=477 for the D67 network) showed highly different 
connectivity ranks in the PCIT network compared to the 
WGCNA network. We call these highly differentially ranked 
(HDR) nodes and are identified as dense clusters of data points 
in the off-diagonal regions of the plots (red data points in 
Figure 1, bottom row). Of the 13,511 genes in the networks, we 
found a total of 1,017 were HDR in at least 1 of the networks 
and 29 were HDR in all but the ALL network Figure 3 (see 
supplementary material). 
 
These HDR nodes are highlighted in the TOM plots of the 
WGCNA derived networks (Figure 1, top row). We found that 
all HDR nodes are among the most highly interconnected, as 
determined by TOM, and were present in every module of their 
respective networks. Table 2 (see supplementary material) 
gene enrichment analyses of a list of HDR nodes from one of 
the WGCNA modules. From this type of analyses, we could 
make an informed conclusion regarding relevance from a 
biological perspective and the impact of WGCNA vs. PCIT in 
retaining or deleting hub genes. 
  
We found that PCIT is removing edges from nodes that are 
among the most highly interconnected genes, not only in a 
network but also within modules, like those mentioned in 
Table 2 (see supplementary material). I.e. it’s removing all the 
strong connections that exist between tightly co-regulated 
genes. While some of these edges may not be seen to be 
independent of the edges to a third node, they are likely to be 
key members of modules. The highly interconnected nature of 
the HDR nodes means that these are good candidate hubs. The 
removal of hubs from networks has a serious effect on the 
topology of that network and of the modules from which it is 
comprised. We believe that the PCIT approach to edge deletion 
is also deleting edges for hub nodes due to the fact that they are 
all highly interconnected for biological reasons rather than the 
formation of spurious edges forming due to non-independence 
of the correlations. The removal of edges by PCIT from HDR 
nodes is likely to have the effect of knocking out the hub nodes 
of the network and is likely to severely disrupt its topology. 
  
Conclusion: 
We have generated ovine microarray gene expression data and 
applied various quality control methods available in 
Bioconductor R programs before comparing two commonly 
used co-expression network construction methods. We 
illustrated similarity and differences in these approaches using 
this real biological data set (a drug challenge transcriptomics 
experiment in sheep) rather than an artificial simulated data set 
or a large data set often only seen in human or mouse studies. 
Thereby, our findings are more applicable to the typical rather 
than atypical studies where experiments tend to be smaller in 

size. However, these investigations and results apply to any 
microarray gene expression data regardless of species. We have 
restricted our comparison to just WGCNA and PCIT softwares 
because they represent two broad categories. The results of this 
study can, somewhat, be extrapolated to those softwares that 
fall under the two broad categories. We can conclude that 
WGCNA method is favorable over PCIT method as the former 
retains biologically relevant hub genes and their connections 
within sub-networks intact. This is proven by gene enrichment 
analyses of all genes within each sub-networks and modules 
across different treatment conditions in both methods and its 
relevance to phenotypes in question (here wool or hair growth). 
While we can recommend testing more GCN algorithms, there 
are several new approaches and softwares constantly emerging 
(e.g. FunNET [18]) and it is impossible to compare all. Lastly, 
one could also test these methods on other transcriptomics data 
sets but this would not change the conclusion.  
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Supplementary material: 
 
Microarray gene expression experiment 
The sheep experiment consisted of twenty time-mated (synchronized with progesterone sponges and then artificially inseminated) 
pregnant Merino ewes that were allocated to 4 equally sized treatment groups receiving daily intramuscular injections of a control 
or metyrapone between day 55 and 65 of gestation. Ewes were killed in humane manner and midside foetal skin samples (2cm) 
were collected from the 16 single pregnancies at either day 60 or 67 of gestation. RNA was extracted and hybridised to Affymetrix 
GeneChip® Genome Arrays.  
 
Microarray Data Quality Control and Exploratory Analyses 
Microarray data was explored and analysed using R 2.13.0 and BioConductor. Many quality control (QC) plots were explored 
(Figure 1) including using methods available in the following BioConductor packages: affyPLM, affy, simpleaffy, affycoretools, made4 
and vsn. Many of the QC plots were performed on both raw and normalised data. Data were normalised using gcRMA background 
correction, quantile normalisation and expression values computed using median polish. The identification of differentially 
expressed (DE) genes was achieved using the limma package while GOEAST was used to identify gene ontology (GO) terms 
enriched in a list of DE genes. We identified possible abundance of genes linked to muscle related GO terms (due to contamination 
with muscle tissue during biopsy of fetal skin tissues) and hence were removed from the skin network analyses. 
 
No RNA or hybridisation (Figure 1 top left) quality issues were detected. PCA analysis of the normalised data showed a clear 
separation of two groups of samples on PC1 (Figure 1 top middle) and was believed to be linked to the possible contamination 
issue. GO enrichment analysis of the 334 significantly DE genes identified by a contrast between samples thought to be 
contaminated and not (Figure 1 top right), revealed a high abundance of genes linked to muscle related GO terms (Figure 1 
bottom). 
 

 
Figure 1: Top left: Pseudo array images showing the weights from the probe level model fitting procedure. Top middle: PCA 
analysis of arrays with separation on PC1 due to contamination. Top right: Heat plot of DE contamination genes. Bottom: GO 
enriched terms and their relationships found in the DE contamination genes 
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Weighted Gene Co-expression Network Analysis (WGCNA) 
Details of the WGCNA method and algorithms are thoroughly discussed in the original paper of Zhang and Horvath [7], an R 
package is also available for performing these analyses [11]. Since its first publication [7], the WGCNA method has been refined, 
standardized and now widely used in the construction of gene co-expression networks including our own previous work [5, 12]. 
Hence, we only briefly describe the method here. As with most co-expression networks, the Pearson correlation coefficients (ρij) 
calculated from the expression values for all pairs (i and j) of transcripts are used to define the edge weights. Typically, a hard 
threshold would result in an adjacency value (aij) between a pair of nodes as either 1 or 0 as: 
 
 
 
 
where, θ is a hard threshold (with a range 0 to 1). 
 
Rather than applying a ‘‘hard’’ threshold to define an unweighted adjacency matrix (network), WGCNA applies the power 
adjacency function to the absolute Pearson correlation matrix to defining a weighted adjacency matrix as: 
 
 
The value of the power function exponent (β) is chosen using the scale-free topology criterion, which is biologically motivated [7]. 
A high β maintains high adjacencies but pushes lower adjacencies towards zero. A linear regression model fitting index R2 
between log10 p(k) and log10(k), where k is the measure of connectivity, is used to determine how well a network fits the scale-free 
topology criterion. There is a trade-off between maximizing model fit (R2) and maintaining a high mean number of connections. 
 
PCIT 
PCIT is a method used to identify spurious edges for removal and is a data driven approach. Full details of the PCIT algorithm are 
provided in Reverter and Chan [13], so we only briefly describe it here, and an R package implementing the algorithm is also 
available [14].  
 
For any given edge in a gene co-expression network it’s weight, derived from a Pearson correlation coefficient, may only be present 
due to high correlations with a third node in the network.  For example, let us consider a trio of genes (A, B and C). If there is a 
strong correlation between AC and BC, it follows that there is likely to be a strong correlation between AB (Figure 2). This 
confounding of direct and indirect associations leads to a spurious edge forming between AB and is likely to cause problems when 
it comes to identifying and interpreting gene modules. 
 

 
Figure 2: Correlations between a trio of genes A, B and C. The strength of correlation between pairs of genes is indicated by line 
width. PCIT determines if the correlation between AB is independent of the strong correlations between AC and BC (left). If the 
correlation between AB is independent of C, the edge is retained (middle). If the edge is found to be dependent on C, the edge is 
removed (right). 
 
PCIT uses partial correlation and information theory approaches to identify and remove such edges, thus only edges are retained if 
they are there on their own merit. The algorithm first builds partial correlations for every trio of genes A, B and C; the three first-
order partial correlation coefficients are computed by: 
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Because PCIT is a completely data-driven approach, it is deemed to be a soft-thresholding approach to edge removal. The network generated 
following PCIT edge deletion has several attractive features: 1) many edges are removed resulting in a much sparser network which is easier to 
analyse; 2) the ability to treat remaining edges as unweighted, thus opening up these networks to unweighted network analysis algorithms; 3) the 
knowledge that all remaining edges are present in their own right i.e. independent. 
 
Highly differentially ranked (HDR) nodes 
We defined highly differentially ranked (HDR) nodes based on the following formulation. First, the connectivity (k) of the ith gene 
(ki) is the sum of the adjacencies between the ith gene and all other genes in the network: 

 
 

 
The connectivities of nodes cannot be easily compared between the networks due to the use of different algorithms and different 
coefficients of β in the WGCNA derived networks. Therefore we compare the ranks of the node connectivities (coded in ascending 
order as 1,2,3,…) to identify those which are highly differentially ranked (HDR) between WGCNA and PCIT derived networks. 
 

 
Figure 3: Venn diagram of the highly differentially ranked (HDR) nodes identified in the Control, Treatment, D60 and D67 
networks. A total of 1,017 HDR nodes were identified across 1 or more of these networks. 
 
Table 1: Microarray experimental design showing treatment groups of 16 pregnant merino ewes in drug challenge experiment 
Group Treatment Treatment period (day of 

gestation) 
Sample collected  
(day of gestation) 

Number of single 
pregnancies 

1 Control 55-59 60 4 
2 Metyrapone 55-59 60 5 
3 Control 55-65 67 4 
4 Metyrapone 55-65 67 3 
 
Table 2: GOEAST analyses of “greenyellow” module from WGCNA analyses. It consisted of 267 genes including those identified 
through traditional differential gene expression analysis in limma, showing biologically relevant genes for wool / hair 
development 
GOID Definition No. of  genes P-value 
GO:0051056 regulation of small GTPase mediated signal transduction 9 0.004 
GO:0007389 pattern specification process 3 0.018 
GO:0010646 regulation of cell communication 11 0.018 
GO:0001763 morphogenesis of a branching structure 2 0.028 
GO:0048754 branching morphogenesis of a tube 2 0.028 
GO:0030509 BMP signaling pathway 1 0.051 
GO:0001569 patterning of blood vessels 1 0.051 
GO:0009880 embryonic pattern specification 1 0.051 
GO:0035239 tube morphogenesis 2 0.056 
GO:0009799 determination of symmetry 1 0.070 
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