Antiviral potential of 4-hydroxypanduratin A, secondary metabolite of Fingerroot, Boesenbergia pandurata (Schult.), towards Japanese Encephalitis virus NS2B/NS3 protease

Chandrabhan Seniya¹, Harshal Mishra¹, Ajay Yadav¹, Nitin Sagar², Babita Chaturvedi¹, Kuldeep Uchadia¹ & Gulshan Wadhwa*¹

¹Department of Biotechnology, Madhav Institute of Technology and Science, Race Course Road, Gola Ka Mandir, Gwalior (M.P.) India; ²Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai-400076; Apex Bioinformatics Centre, Department of Biotechnology, Ministry of Science and Technology, Lodhi Road, New Delhi – 110 003, India; Gulshan Wadhwa – Email: gulshan@dbt.nic.in; Phone: +91-9811301820; Fax: +91-11-24362884; *Corresponding author

Received December 11, 2012; Revised December 21, 2012; Accepted December 22, 2012; Published January 09, 2013

Abstract:
4-hydroxypanduratin A is a secondary metabolite of Boesenbergia pandurata Schult. (Fingerroot) plant with various pharmacological activities such as neuroprotective, potent antioxidant, antibacterial and antifungal. Flaviviral NS2B/NS3 protease activity is essential for polyprotein processing and viral replication for Japanese Encephalitis Virus (JEV), a major cause of Acute Encephalitis in Asia. Inhibition of formation of this complex by arresting the binding of NS2B with NS3 would reduce the enzyme’s activity to meager proportions and hence would prevent further viral proliferation. The automated 3D structure of NS2B protein of the JEV GP78 was predicted based on the sequence-to-structure-to-function paradigm using I-TASSER and the function of NS2B protein was inferred by matching to other known proteins. The stereochemical quality of predicted structure was checked by PROCHECK. The antiviral activity of 4-hydroxypanduratin A against NS2B protein as a potential drug has been elucidated in this paper. Docking simulation analysis showed 4-hydroxypanduratin A as potential inhibitor of NS2B protein/ cofactor which is necessary for NS3 protease activity. 220 derivatives of 4-hydroxypanduratin A were virtually screened with rigid criteria of Lipinski’s rule of 5 using Autodock4.2. 4-hydroxypanduratin A was found interacting with target hydrophilic domain in NS2B protein by two H-bonds (Gly80 and Asp81) with active residues, several hydrophobic interactions, Log P value of 5.6, inhibition constant (Ki) of 51.07nM and lowest binding energy of -9.95Kcal/Mol. Hence, 4-hydroxypanduratin A targeted to Site 2 will have sufficient profound effect to inhibit protease activity to abrogate viral replication. It could be a promising potential drug candidate for JEV infections using NS2B Site 2 as a Drug target.

Keywords: NS2B/NS3 protease, Japanese Encephalitis Virus, Structure prediction, I-TASSER, Molecular Docking, 4-hydroxypanduratin A.

Background:
Japanese encephalitis (JE) is one of the major causes of Acute Encephalitis Syndrome in South and East Asian countries. The disease is caused by the Japanese Encephalitis Virus (JEV) which is a plus strand RNA virus belonging to Flaviviridae super family [1]. The Flavivirus genus includes over 70 pathogenic viruses such as Dengue virus (DENV), West Nile virus (WNV), and Yellow fever virus (YFV) etc. JEV strains can be
distinguished into 5 distinct genotypes based on analysis of its envelope (E) gene sequences. Of these 5 genotypes Genotype III is most widely distributed in the Indian Subcontinent and among South-East Asian countries [2, 3].

The JE strain selected in this study is the North Indian isolate GP78 which belongs of Genotype III. The ~11kb viral genome of JE is translated into a single polyprotein which is cleaved into 3 structural and 7 non structural proteins by both host and viral proteases [4-5]. The viral genome is organized into gene sequences as NH₂-prM-E-NS1-NS2A-NS2B-NS3-NS4A-NS4B-NS5-COOH. Capsid (C), Membrane (M) and Envelope (E) are structural proteins whereas the non structural proteins are designated as NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5 [6-8]. The NS3 protease in complex with its cofactor NS2B cleaves the polyprotein at intergenic junctions containing dibasic amino acid motifs (Arg-Arg, Lys-Arg or Arg-Lys followed by Ser, Gly, or Ala) [9]. Sequence alignment and similarity studies reveal that the mechanism of polyprotein processing by NS2B/NS3 protease is conserved among Flaviviruses. A 40 residue central hydrophilic domain in Dengue NS2B is essential for the optimum activity of NS2B-NS3 complex. Furthermore, the hydrophobicity profiles of other Flaviviruses including JE have significant sequence similarity with a central hydrophilic domain surrounded by hydrophobic regions[10].

Figure 1: A) Schematic representation of α helices, β sheets and loops in predicted 3D model of NS2B by ab initio, threading and comparative modeling generated by UCSF Chimaera 1.6, B) Chemical structure of 4-hydroxypanduratin A [CID: 636530].

Natural plant, animal and mineral products with therapeutic properties have been used since time immemorial as drugs for human treatment against various infectious diseases. About 252 drugs prescribed by WHO as basic and essential for humans; 11% are exclusively of plant origin and many synthetic drugs have natural plant precursors [11]. The derivatives of 4-hydroxypanduratin A used are natural plant secondary metabolites of Boesenbergia pandurata (Roxb.) Schlr. (Syn. Kaempferia pandurata Roxb.) (Fingerroot) which is a member of the Zingiberaeaceae family (ginger). It has been widely used as a medicinal plant, has been reported to possess pharmacological activities such as anti-inflammatory [12], anti-oxidative properties [13], neuroprotective, chemoprotective [14], antioxidant [15] and antimicrobial activity. The 4-hydroxypanduratin A (Figure 1B) has shown promising inhibitory activity against Dengue virus and Flaviviral activity is essential for polyprotein processing and viral replication for Japanese Encephalitis Virus (JEV), a major cause of Acute Encephalitis in Asia. Inhibition of formation of this complex by arresting the binding of NS2B with NS3 would reduce the enzyme's activity to meager proportions and hence would prevent further viral proliferation. In this paper 4-hydroxypanduratin A and its 220 derivatives were docked on the central domain of NS2B consisting of about 40 hydrophilic residues was selected which also forms Site 2 to identify potential lead inhibitor that would prevent the binding of NS2B with NS3. Docking has been used to predict the interactions between ligand and receptor. Since the ligand can bind with the binding site on the receptor molecule in several possible orientations the goal of docking is to screen in favorable interactions against prohibitive ones[18].

Figure 2: Pair-Wise Sequence Alignment using LALIGN in EMBOSS

Methodology:
Protein selection and structure prediction
The 3D structure of NS2B protein/cofactor is not reported in the RCSB protein databank. Therefore, the amino acid sequence
The energy minimized NS2B pdb file was generated by use of Swiss PDB viewer (http://www.ebi.ac.uk/thornton-srv/software/LIGPLOT/). After energy minimization Kollman charges, polar hydrogen atoms and solvation parameters were added to NS2B structure. 3D grid maps for calculating atomic energy potentials for each atom type in the ligand molecule which surround the binding site on the receptor molecule was generated [33-34]. AutoGrid program available with AutoDock 4.2 was used to generate grid maps for the ligands. The grid map was created in such a way that the entire hydrophilic region of NS2B was covered. The box was set to 90Å×78Å×42Å with grid points separated by 0.375Å. Docking was performed in rigid state and Lamarckian genetic algorithm was used to find the most pose where the ligand can bind to the receptor with lowest binding energy. The results of docking studies were visualized using LIGPLOT software (http://www.ebi.ac.uk/thornton-srv/software/LIGPLOT/) and analyzed as per our previous study [35]. A complete drug target identification using molecular modeling and docking studies workflow is followed in this work and given in (Figure 3).

Graphical abstract

![Graphical abstract](image)

Figure 3: A workflow for complete drug target identification

Analysis and confirmation of Docking Results

The search for the best ways is to fit ligand (4-hydroxypanduratin A), into NS2B structure, using Autodock4.2 resulted in docking files that contain details including records of docking. The obtained log files were read in ADT (Auto Dock Tool) and Python scripts in MGL tools package were used to analyze the docking results [34]. The similarity of docked structures was measured by computing the RMSD between the
coordinates of the atoms and creating clustering of the conformations based on the RMSD values. The lowest binding energy conformations in all clusters were considered as the most favorable docking pose.

Figure 4: A) A schematic Ligplot of NS2B/4-hydroxypanduratin a complex, B) Binding pocket of NS2B with ligand (light green) bound with Asp81 (cyan) Image generated by Pymol and C) Hydrogen bond between ligand (white) and Aspartate 81 residue (yellow) Image generated by Pymol.

Results and Discussion:
Structure prediction and validation
All the information about a protein’s biological function cannot be ascertained by mere knowledge of its primary sequence or the secondary structure. It is therefore, essential to know its tertiary structure. Additionally, the 3D structure of NS2B cofactor was not reported in RCSB PDB Data bank. BLASTp similarity search was performed against PDB data base but no significant results with complete query coverage were obtained. Even use of multiple templates could not cover the target protein completely to be modeled. However, the best alignments have been identified by using LALIGN inEMBOSS (Figure 2). 3D model of NS2B protein (AAC27708) was predicted by homology modeling using MODELLER 9.10 [20] with multiple templates. The obtained 3D structure was poor quality with inappropriate folded conformations. Therefore, the automated 3D structure of NS2B cofactor from JEV GP78 was predicted based on the sequence-to-structure-to-function paradigm using I-TASSER (Figure 1A) and the function of NS2B protein was inferred by structurally matching the 3D models with other known proteins [36]. The stereochemical quality of NS2B cofactor structure was checked by PROCHECK [37]. Backbone conformation by evaluation of Psi/Phi angles in Ramachandran plot predicts only two amino acids (Glu24 and Ser68) in disallowed geometry. Ramachandran plot gives 86.5% residues in most favored regions, 9% in additionally allowed regions, 2.7% in generously allowed regions and only 1.8% residues in disallowed regions. Thus, the predicted 3D structure by I-TASSER was of good quality with proper folded conformation.

Docking of 4-hydroxypanduratin A to NS2B
The active conformation and the molecular alignment of each derivative of 4-hydroxypanduratin A were done using docking program Autodock4.2 into binding pockets of NS2B Site 2 (75-87). Mutagenesis studies in West Nile Virus NS2B/NS3 protease revealed two regions in NS2B as essential for protease activity. Both of them were found conserved in other Flaviviruses including JEV. Site 1 (59-62) is a 4 residue long region and contain conserved residues Ile60/Val60 and Trp62 while Site 2 (75-87) is about 13 residue long and binds very close to the active site of NS3. This region is believed to be quite
In NS2B protein/cofactor, Site 1 (59-62) contains conserved residues Ile/Val60 and Trp62 which bind to adjacent pockets of NS3. This could be targeted by small aromatic, drug like compounds [38]. Additionally, the displacement of NS2B cofactor from this region is likely to prevent correct folding of the protease and hence lead to inactivation. However, Site 1 region of NS2B cofactor remains highly accessible. Hence, 4-hydroxypanduratin A found highly accessible. Hence, 4-hydroxypanduratin A targeted to Site 2 will have sufficient profound effect to inhibit protease activity to abrogate viral replication. It could be a promising potential drug candidate for JEV infections using NS2B Site 2 as a Drug target.

Conclusion:
The present study shows that the molecule 4-hydroxypanduratin A was found to bind with the NS2B cofactor of NS3 with least binding energy among the tested compounds. The free binding energy of NS2B/4-hydroxypanduratin A complex was found highest (ΔG = −9.95Kcal/Mol) with inhibition constant (Ki) of 51.07nM (Table 1). Due to the close proximity of Site 2 to the active site, where it forms part of the substrate binding cleft, it is likely that displacement of Site 2 region will interfere with substrate binding [41]. The inhibitor 4-hydroxypanduratin A binds to NS2B cofactor in Site 2 region with Gly80 and Asp81 and in the vicinity of many hydrophobic contacts (Figure 4A & 4B). Hence, 4-hydroxypanduratin A targeted to Site 2 will have sufficient profound effect to inhibit protease activity to abrogate viral replication. It could be a promising potential drug candidate for JEV infections using NS2B Site 2 as a Drug target.

Acknowledgement:
Authors are grateful to the department of Biotechnology MITS Gwalior for providing computational facility and all the bioinformatics software developers who have developed such wonderful analysis tools.

References:

Tambunan USF & Alamudi S, Bioinformation. 2010 5: 250 [PMCID: PMC3055701]

Edited by P Kangueane

Citation: Seniya et al. Bioinformation 9(1): 054-060 (2013)

License statement: This is an open-access article, which permits unrestricted use, distribution, and reproduction in any medium, for non-commercial purposes, provided the original author and source are credited.
Supplementary material:

Table 1: Top ten compounds against NS2B protein [The amino acids are represented by their one letter code]

<table>
<thead>
<tr>
<th>Rank</th>
<th>PubChem ID</th>
<th>Molecular formula</th>
<th>M.W. (g/mol)</th>
<th>LogP value</th>
<th>Energy Score (kcal/mol)</th>
<th>No. of H-bonds; hydrophobic contacts</th>
<th>Inhibitor constant K_i (nM) at 298.15 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>636530</td>
<td>$C_{25}H_{28}O_4$</td>
<td>392.487</td>
<td>5.6</td>
<td>-9.95</td>
<td>2(G80,D81);10</td>
<td>51.07</td>
</tr>
<tr>
<td>2</td>
<td>45280006</td>
<td>$C_{25}H_{28}O_4$</td>
<td>392.487</td>
<td>5.6</td>
<td>-9.94</td>
<td>0; 10</td>
<td>51.36</td>
</tr>
<tr>
<td>3</td>
<td>21858822</td>
<td>$C_{20}H_{11}O_5$</td>
<td>336.338</td>
<td>3.5</td>
<td>-9.89</td>
<td>2(G80,T108);10</td>
<td>56.11</td>
</tr>
<tr>
<td>4</td>
<td>6476085</td>
<td>$C_{20}H_{12}O_5$</td>
<td>340.369</td>
<td>4.1</td>
<td>-8.78</td>
<td>1(C101);7</td>
<td>363.76</td>
</tr>
<tr>
<td>5</td>
<td>57175290</td>
<td>$C_{10}H_{2}O_3$</td>
<td>296.360</td>
<td>3.6</td>
<td>-8.63</td>
<td>1(C101);9</td>
<td>473.63</td>
</tr>
<tr>
<td>6</td>
<td>20763922</td>
<td>$C_{20}H_{20}O_4$</td>
<td>324.370</td>
<td>4.6</td>
<td>-8.53</td>
<td>2(C101,L104);9</td>
<td>561.78</td>
</tr>
<tr>
<td>7</td>
<td>23069388</td>
<td>$C_{10}H_{11}O_4$</td>
<td>272.295</td>
<td>3.9</td>
<td>-8.45</td>
<td>2(Y119,C101);9</td>
<td>635.33</td>
</tr>
<tr>
<td>8</td>
<td>22673586</td>
<td>$C_{15}H_{11}O_3P$</td>
<td>354.248</td>
<td>1.6</td>
<td>-8.40</td>
<td>2(D81,C101);8</td>
<td>691.03</td>
</tr>
<tr>
<td>9</td>
<td>2733750</td>
<td>$C_{17}H_{11}O_3$</td>
<td>270.323</td>
<td>4.8</td>
<td>-8.40</td>
<td>1(C101);8</td>
<td>693.75</td>
</tr>
<tr>
<td>10</td>
<td>22679006</td>
<td>$C_{15}H_{12}O_3P$</td>
<td>354.248</td>
<td>1.6</td>
<td>-8.39</td>
<td>2(C101,L104);9</td>
<td>709.72</td>
</tr>
</tbody>
</table>