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Abstract: 
We developed PathAct, a novel method for pathway analysis to investigate the biological and clinical implications of the gene 
expression profiles. The advantage of PathAct in comparison with the conventional pathway analysis methods is that it can 
estimate pathway activity levels for individual patient quantitatively in the form of a pathway-by-sample matrix. This matrix can 
be used for further analysis such as hierarchical clustering and other analysis methods. To evaluate the feasibility of PathAct, 
comparison with frequently used gene-enrichment analysis methods was conducted using two public microarray datasets. The 
dataset #1 was that of breast cancer patients, and we investigated pathways associated with triple-negative breast cancer by 
PathAct, compared with those obtained by gene set enrichment analysis (GSEA). The dataset #2 was another breast cancer dataset 
with disease-free survival (DFS) of each patient. Contribution by each pathway to prognosis was investigated by our method as 
well as the Database for Annotation, Visualization and Integrated Discovery (DAVID) analysis. In the dataset #1, four out of the six 
pathways that satisfied p < 0.05 and FDR < 0.30 by GSEA were also included in those obtained by the PathAct method. For the 
dataset #2, two pathways ("Cell Cycle" and "DNA replication") out of four pathways by PathAct were commonly identified by 
DAVID analysis. Thus, we confirmed a good degree of agreement among PathAct and conventional methods. Moreover, several 
applications of further statistical analyses such as hierarchical cluster analysis by pathway activity, correlation analysis and 
survival analysis between pathways were conducted. 
 

 
Background: 
Gene expression profiling by microarray analysis provides a 
huge amount of biological information and has been widely 
used in biological and clinical research. Since microarray 
technique simultaneously detects expression levels for more 
than ten thousand of genes, bioinformatics approaches for 
interpretation of such large-scale data are essential. The 
microarray data is often examined using the information of a 
pathway, which represents a series of biological reactions that 
causes a specific event such as signal transduction, cell 
proliferation, and drug metabolism. There are several pathway 
databases such as the KEGG PATHWAY database [1], BioCarta 
[2] and GenMAPP [3]. In addition, Gene Ontology (GO) 
database [4] provides controlled vocabularies of various genes 
and has a hierarchical structure based on their functions. 
Recently, several interpretation tools such as gene set 
enrichment analysis (GSEA) [5], the Database for Annotation, 

Visualization and Integrated Discovery (DAVID) [6], GenMAPP 
[3], and GOMiner [7] have been developed and widely used in 
the microarray analysis.  The majority of tools for pathway 
analysis detect pathway-level difference between two groups 
(e.g., cases and controls). The output results generated by these 
tools are typically given as a list of p-values and other software-
specific information, which is not suitable for further analyses. 
If the activity (i.e., the degree of up- and down-regulation) of a 
pathway can be estimated in each samples, these information 
would be of great use for investigation of patient-specific 
characteristics of a disease and further development of 
personalized medicine. In this study, a novel method for 
pathway analysis, called PathAct, is introduced. PathAct can 
estimate individual pathway activity by conversion of gene 
expression data into quantitative values for both of each 
pathway and each sample. One of the most unique features is 
that the output data is given in matrix form, which can be used 
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for further analysis such as hierarchical clustering and other 
multivariate analysis methods.  
 
The median polish (MP) algorithm [8], which is a core 
component in PathAct, is a suitable method for an additive 
decomposition of a two-dimensional data matrix. MP is known 
as an exploratory data analysis for extraction of both row-wide 
and column-wide trends from a two-dimensional matrix. MP is 
an iterative procedure that consists of the following four steps: 
(1) calculating median values of each row, (2) subtracting the 
median values from each row, (3) calculating median values of 
each column, and (4) subtracting the median values from each 
column. These steps are repeated using the residual matrix as a 
new data, and the median vectors for the row and the column 
are accumulated at each iteration. This procedure is iterated 
until the reduction of the sum of absolute residual is less than a 
specified value, or the maximum limit of iteration is exceeded. 
The MP method has been used for several bioinformatics tools 
including the robust multi-array average (RMA) method [9], 
one of the most well-known normalization methods for DNA 
microarray data. 
 
Methodology: 
PathAct algorithm 
Application of the MP method to microarray data is 
formularized as follows. Suppose that a pathway p contains Np 
genes, and M samples are obtained from the microarray 
experiment. Note that a gene may belong to multiple pathways. 
For the Np×M gene expression matrix Gp, the expression 
intensity of the i-th gene for the j-th individual is denoted as 
Gp[i, j]. Using MP, Gp is decomposed into a gene effect gp[i], an 
individual effect ap[j], and an residual matrix Rp[i, j], Gp[i, j] = 
gp[i] + ap[j] + Rp[i, j]; The individual effect ap is the pathway 
activity and is used for further analysis. The gene effect gp 
reflects a degree of bias such as hybridization efficiency of each 
gene. When a database contains K pathways, these steps are 
repeated for K times to produce the K×M pathway activity 
matrix A by collecting ap of each pathway. These procedures, 
namely PathAct, were implemented in R statistical language 
version 2.15.2 (http://www.r-project.org/). The program is 
freely available upon request. A dataset including 229 human 
pathways was obtained from the KEGG PATHWAY database 
using an R packages "KEGG.db" and "hgu133plus2.db". 
"KEGG.db" contains information about KEGG PATHWAY 
entry such as pathway IDs and names, whereas 
"hgu133plus2.db" is an annotation data for Affymetrix HG-133 
plus 2.0 array including pathway information. When multiple 
probe sets correspond to a single gene, a probe set with the 
largest interquartile range (IQR) was selected as a responsible 
probe set for the gene. Termination conditions of each MP 
process were set to 1% as a change of absolute residual and ten 
times as the maximum iteration steps. 
 
Application to clinical microarray datasets 
To evaluate the feasibility of our pathway analysis method, two 
public microarray datasets were downloaded from the Gene 
Expression Omnibus (GEO) database (http:// www.ncbi.nlm. 
nih.gov/geo/). The dataset #1 (GSE19615) contains a total of 
115 gene expression profiles obtained from tissue specimens of 
breast cancer patients [10] using HG-133 Plus 2.0 arrays. The 
data have clinicopathological information for estrogen receptor 
(ER), progesterone receptor (PR), and human epidermal growth 

factor receptor 2 (HER2) expressions. Triple-negative breast 
cancer (TNBC), which does not express ER, PR, and HER2, is 
associated with higher risk of distant metastasis and poor 
prognosis compared to other type of breast cancer (non-triple-
negative breast cancer; NTNBC) [11]. Therefore, we aimed to 
identify pathways differently activated between TNBC and 
NTNBC. The gene expression profiles including 54,613 probe 
sets were converted into a pathway activity matrix using 
PathAct. Association between pathway activities and TNBC 
was determined by the Wilcoxon exact rank-sum test provided 
by "exactRankTests" package in R. Then, pathways with at least 
1.1-fold increase or decrease between TNBC and NTNBC were 
further selected. The dataset #2 (GSE21653) contains a total of 
266 gene expression profiles from breast cancer patients using 
HG-133 Plus 2.0 arrays [12]. Among them, 252 patients had 
information for disease-free survival (DFS), which was 
calculated from the date of diagnosis until date of first relapse 
or date of death (when the relapse was not observed). These 
gene expression profiles were also converted into a pathway 
activity matrix using PathAct, and we investigated pathways 
associated with DFS using Cox proportional hazards model. In 
both datasets, pathways satisfying both p < 0.05 by Wald test 
and FDR < 0.30 were considered statistically significant. 
 
Comparison with conventional pathway analysis methods 
For the dataset #1, we investigated pathways associated with 
TNBC by gene set enrichment analysis (GSEA) [5]. We used a 
collection of gene sets for KEGG pathways provided by 
MSigDB 3.1 (c2.cp.kegg.v3.1.symbols.gmt, available at 
http://www.broadinstitute.org/gsea/msigdb/). Pathways that 
satisfied both p < 0.05 and FDR < 0.30 were selected and were 
compared with the results obtained by PathAct. In the second 
analysis using dataset #2, as GSEA cannot conduct survival 
analysis, we first extracted genes related to DFS by Cox 
proportional hazards model using a cut-off value of p < 0.05 by 
Wald test. Then, the selected genes were analyzed by DAVID 
Functional Annotation Tool [6] version 6.7. We used the 
"KEGG_PATHWAY" category provided by DAVID for analysis 
of pathways that were overrepresented by the genes associated 
with DFS. Two separate analyses were performed for the genes 
up-regulated in poor prognosis patients (hazards ratio (HR) > 1 
by the Cox regression) and for those down-regulated in poor 
prognosis patients (HR < 1). Pathways that satisfied both p < 
0.05 and FDR < 0.30 by DAVID analysis were then selected. 
 
Discussion: 
Pathway-based analysis of TNBC dataset 
Using the dataset #1, we calculated the pathway activity matrix 
of 229 KEGG pathways for the 115 patients by the PathAct 
method. We then identified 15 up-regulated and 13 down-
regulated pathways in TNBC by comparing the pathway 
activity values between TNBC and NTNBC. Using the 
calculated pathway activity levels, we next performed a 
hierarchical cluster analysis using the above 28 pathways 
(Figure 1A). When the patients were classified into two major 
clusters, the left cluster contained four TNBC and 61 NTNBC 
patients, whereas the right cluster contained 26 TNBC and 24 
NTNBC patients (p < 0.001 by Fisher's exact test). This indicates 
that the PathAct method can summarize the important 
molecular information in breast cancer, a part of which is 
necessary for classification of TNBC from NTNBC. 
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Figure 1: Hierarchical clustering of pathways using output data generated by PathAct. The pathway activity data was transformed 
into z-scores by setting the mean expression intensities to 0 and variances to 1 for all pathways. The Euclidean distance was used to 
calculate a similarity matrix among pathways or individuals, respectively. The red dashed lines indicate the two major clusters 
obtained by the hierarchical cluster analysis. A: a hierarchical cluster analysis using the selected 28 pathways for the dataset #1. B: a 
hierarchical cluster analysis using the selected 14 pathways for the dataset #2. 
 
Pathways associated with TNBC 
The pathways associated with cell proliferation (e.g., "DNA 
replication" and "Cell cycle") and transcription process (e.g., 
"Basal transcription factors" and "RNA polymerase") were 
significantly up-regulated in TNBC Table 1 (see 
supplementary material). This suggests that the cancer cells in 
TNBC are more aggressive than those in other type of cancer. 
On the other hand, the pathway "ECM-receptor interaction", 
related to cell adhesion, was down-regulated in TNBC Table 1. 
Because loss of cell adhesion promotes migration, invasion and 
metastasis of cancer cells, the down-regulation of these 
pathways suggested the higher metastatic ability of TNBC than 
NTNBC. It has been reported that TNBC are further classified 
into several subtypes such as basal-like, normal-like, and  
 

claudin-low subtypes [13]. Among them, the claudin-low 
subtype shows lower mRNA expression levels of cell cycle- 
related genes [14]. As shown in Figure 1A, a part of TNBC 
patient’s exhibits lower activity levels of cell cycle-related 
Pathways, which suggest the existence of subtypes among 
TNBC patients.  
 
Pathway-based analysis of DFS in breast cancer 
Using the dataset #2, we also obtained the pathway activity 
matrix of 229 KEGG pathways for the 266 patients by the 
PathAct method. Using the pathway activity levels, we selected 
14 pathways that had significant association with DFS Table 2 
(see Supplementary material). Among these pathways, nine 
showed hazard ratio (HR) > 1, and the other five had HR < 1. 
Similar to the analysis of the dataset #1, we conducted a 



BIOINFORMATION open access 
 

ISSN 0973-2063 (online) 0973-8894 (print)   
Bioinformation 9(8): 394-400 (2013) 397  © 2013 Biomedical Informatics
 

hierarchical cluster analysis using the selected 14 pathways 
(Figure 1B). When the patients were divided into the two 
clusters, the left cluster contained 27 recurrence and 80 
recurrence-free patients, whereas the right cluster contained 56 
recurrence and 89 recurrence-free patients (p = 0.030 by Fisher's 
exact test). This indicated that the patients in the right cluster 
had significantly higher risk of tumor recurrence. 
 

 
Figure 2: Application of PathAct method for further numerical 
analysis. A: correlation analysis of "DNA replication" and "Cell 
cycle" for the dataset #1 (p < 0.001 by Pearson's correlation test). 
B: analysis of correlation between DFS and the pathway activity 
in "Allograft rejection". Down-regulation of this pathway 
contribute to better prognosis (p = 0.034 by log-rank test).  
 
Pathways associated with prognosis of breast cancer 
The pathways associated with cell proliferation (e.g., "DNA 
replication", "Base excision repair", and "Cell cycle") were 
positively correlated with poor prognosis Table 2. Promotion of 
cell proliferation in cancer is a typical phenomenon in 
carcinogenesis and cancer progression. On the other hand, the 
five pathways for better prognosis contained "Asthma" and 
"Graft-versus-host disease", which did not seem to be associated 
with cancer. However, these pathways include genes related to 
immune response process such as antigen processing (e.g., 
MHC class II genes) and cytokines (e.g., IL2, 4, 5, and 9). This 
suggested that the immune response function in cancerous 
tissue was activated in patients with better prognosis compared 
with patients with poor prognosis. In fact, it has been reported 
that breast cancer patients with a higher number of tumor-
infiltrating CD8(+) lymphocytes shows better prognosis [15]. 
Therefore, activation of these pathways in patients with good 
prognosis is possibly caused by increased number of 
lymphocytes by lymphocytic infiltration. 
 
Comparison to conventional methods 
In order to validate the PathAct method, we compared the 
analysis results of the datasets #1 and #2 with other 
approaches. First, we performed GSEA for the dataset #1 and 
identified six pathways that were significantly altered in TNBC 
Table 3 (see supplementary material). Interestingly, four out of 
six pathways identified by GSEA were also included in those 
obtained by the PathAct method. Therefore, we confirmed that 
GSEA and PathAct had ability to detect common biological 

pathways in the microarray dataset. Next, we evaluated 
pathways associated with DFS in the dataset #2. Using Cox 
proportional hazards model, 1,487 probe sets were identified to 
be negatively correlated with DFS, whereas 1,081 probe sets had 
positive correlation with DFS. DAVID analysis was then 
performed for each of the selected gene sets Table 4 (see 
supplementary material. "Cell Cycle" and "DNA replication" 
pathways were significantly overrepresented in genes 
associated with poor prognosis, and these were also detected by 
the PathAct method. Similarly, 13 pathways were identified for 
genes correlated with good prognosis, and four pathways 
associated with immune response ("Asthma", "Graft-versus-
host disease", "Allograft rejection", and "Type I diabetes 
mellitus") were also detected by the PathAct. Thus, we 
confirmed good agreement between PathAct and DAVID. 
 
Quantitative analyses using pathway activities 
A major advantage of PathAct method is that obtained pathway 
activity levels can be used for further statistical analysis. For 
example, the correlation analysis of "DNA replication" and "Cell 
cycle" for the dataset #1 was performed (Figure 2A). These two 
pathways showed significant correlation (p < 0.001 by Pearson's 
correlation test), and both pathways were up-regulated in 
TNBC compared with NTNBC. Another example is an analysis 
of correlation between DFS and the pathway activity in 
"Allograft rejection" (Figure 2B). When the median value of the 
pathway activity levels was chosen for a cut-off point, it was 
demonstrated that up-regulation of this pathway contribute to 
better prognosis (p = 0.034 by log-rank test). Because the 
"Allograft rejection" pathway contains many genes associated 
with immune response, this result infers that increased number 
of lymphocytes by lymphocytic infiltration could contribute to 
the better prognosis of the breast cancer patients. 
 
Conclusion:  
Pathway analysis plays an important role in interpreting 
genome-wide gene expression data. Several methods for 
pathway analysis have been proposed, but they are restricted to 
making comparisons between groups. Thus, the development 
of a flexible evaluation framework for individual patients is 
crucial for the advanced interpretation of microarray data. In 
this study, a novel approach for estimating individual pathway 
activity using the median polish algorithm was introduced. 
Using the clinical microarray datasets, the capability of the 
PathAct method was evaluated. The PathAct method could 
detect the similar pathways with those obtained by the 
conventional methods such as GSEA and DAVID. Moreover, 
because the processed data (i.e., the pathway activity matrix) 
are given as quantitative values for both of each pathway and 
each sample, they could be utilized for further statistical 
analysis including analysis of correlation and survival data. 
Therefore, PathAct is a promising tool for pathway-level 
investigation and interpretation of the comprehensive gene 
expression data. 
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Supplementary material: 
 
Table 1: List of pathways associated with TNBC using PathAct. 
Pathway p-value FDR Fold 
Up-regulated pathways in TNBC    
 DNA replication <0.001 <0.001 1.272 
 Cell cycle <0.001 <0.001 1.202 
 Mismatch repair <0.001 <0.001 1.183 
 Ribosome biogenesis in eukaryotes <0.001 <0.001 1.185 
 Vitamin B6 metabolism <0.001 <0.001 1.457 
 RNA transport <0.001 <0.001 1.115 
 Basal transcription factors <0.001 <0.001 1.118 
 Pathogenic Escherichia coli infection <0.001 <0.001 1.149 
 Homologous recombination <0.001 0.002 1.105 
 Glycosphingolipid biosynthesis - lacto and neolacto series <0.001 0.004 1.113 
 Pentose phosphate pathway 0.001 0.011 1.121 
 RNA polymerase 0.001 0.011 1.116 
 Dorso-ventral axis formation 0.001 0.012 1.135 
 Non-homologous end-joining 0.008 0.032 1.101 
 Lysine biosynthesis 0.016 0.051 1.200 
Down-regulated pathways in TNBC    
 Hypertrophic cardiomyopathy (HCM) <0.001 <0.001 0.905 
 Notch signaling pathway <0.001 <0.001 0.877 
 Circadian rhythm - mammal <0.001 <0.001 0.851 
 Dilated cardiomyopathy <0.001 0.001 0.905 
 Fatty acid biosynthesis <0.001 0.001 0.826 
 ECM-receptor interaction <0.001 0.003 0.832 
 Taurine and hypotaurine metabolism 0.001 0.008 0.854 
 Cyanoamino acid metabolism 0.001 0.008 0.834 
 Other glycan degradation 0.001 0.009 0.887 
 Sulfur relay system 0.002 0.012 0.893 
 Caffeine metabolism 0.006 0.027 0.871 
 Thiamine metabolism 0.010 0.038 0.894 
Complement and coagulation cascades 0.011 0.040 0.904 
 
Table 2: List of pathways associated with DFS by PathAct. 
Pathway HR (95% CI) p-value FDR 
Negative correlation with DFS   
 DNA replication 2.049 (1.235-3.399) 0.005  0.217  
 Base excision repair 3.130 (1.366-7.168) 0.007  0.217  
 Non-homologous end-joining 4.533 (1.491-13.78) 0.008  0.217  
 Aminoacyl-tRNA biosynthesis 3.353 (1.373-8.186) 0.008  0.217  
 Cell cycle 2.535 (1.257-5.112) 0.009  0.217  
 Nucleotide excision repair 2.818 (1.288-6.164) 0.009  0.217  
 Valine, leucine and isoleucine biosynthesis 2.536 (1.206-5.336) 0.014  0.279  
 Terpenoid backbone biosynthesis 2.203 (1.169-4.153) 0.015  0.279  
 One carbon pool by folate 2.593 (1.196-5.624) 0.016  0.279  
Positive correlation with DFS   
 Asthma 0.343 (0.159-0.737) 0.006  0.217  
 Graft-versus-host disease 0.526 (0.327-0.847) 0.008  0.217  
 Staphylococcus aureus infection 0.573 (0.378-0.868) 0.009  0.217  
 Allograft rejection 0.545 (0.345-0.862) 0.009  0.217  
 Type I diabetes mellitus 0.520 (0.304-0.891) 0.017  0.284  

 
Table 3: TNBC-associated pathways analyzed by GSEA. 
Pathway Size NES* p-value FDR 
Aminoacyl trna biosynthesis 32 1.928  <0.001  0.063  
Cell cycle 113 1.869  <0.001  0.069  
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RNA degradation 51 1.735  0.037  0.206  
DNA replication 34 1.698  0.031  0.216  
Basal transcription factors 33 1.696  0.020  0.175  
Glycosphingolipid biosynthesis lacto and neolacto series 26 1.663  0.011  0.196  
* NES, normalized enrichment score. 
 
Table 4: List of pathways associated with DFS identified by DAVID. 
Pathway Size % p-value FDR 
Negative correlation with DFS     
 hsa04110:Cell cycle 21 2.41  < 0.001 < 0.001 
 hsa03030:DNA replication 9 1.03  < 0.001 0.025  
      
Positive correlation with DFS     
 hsa05330:Allograft rejection 12 3.90  < 0.001 < 0.001 
 hsa05332:Graft-versus-host disease 12 3.90  < 0.001 < 0.001 
 hsa04940:Type I diabetes mellitus 12 3.90  < 0.001  < 0.001  
 hsa04612:Antigen processing and presentation 15 4.87  < 0.001  < 0.001  
 hsa05310:Asthma 10 3.25  < 0.001  < 0.001  
 hsa05320:Autoimmune thyroid disease 12 3.90  < 0.001  < 0.001 
 hsa04672:Intestinal immune network for IgA production 11 3.57  < 0.001  < 0.001  
 hsa05416:Viral myocarditis 12 3.90  < 0.001  < 0.001  
 hsa05322:Systemic lupus erythematosus 12 3.90  < 0.001  < 0.001  
 hsa04514:Cell adhesion molecules (CAMs) 13 4.22  < 0.001  < 0.001  
 hsa04640:Hematopoietic cell lineage 7 2.27  0.005  0.055  
 hsa00340:Histidine metabolism 4 1.30  0.017  0.149  
 hsa05340:Primary immunodeficiency 4 1.30  0.028  0.219  
 
 
 


