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Abstract: 
Annotations of the genes and their products are largely guided by inferring homology. Sequence similarity is the primary measure 
used for annotation purpose however, the domain content and order were given less importance albeit the fact that domain 
insertion, deletion, positional changes can bring in functional varieties. Of late, several methods developed quantify domain 
architecture similarity depending on alignments of their sequences and are focused on only homologous proteins. We present an 
alignment-free domain architecture-similarity search (ADASS) algorithm that identifies proteins that share very poor sequence 
similarity yet having similar domain architectures. We introduce a “singlet matching-triplet comparison” method in ADASS, 
wherein triplet of domains is compared with other triplets in a pair-wise comparison of two domain architectures. Different events 
in the triplet comparison are scored as per a scoring scheme and an average pairwise distance score (Domain Architecture Distance 
score - DAD Score) is calculated between protein domains architectures. We use domain architectures of a selected domain termed 
as centric domain and cluster them based on DAD score. The algorithm has high Positive Prediction Value (PPV) with respect to 
the clustering of the sequences of selected domain architectures. A comparison of domain architecture based dendrograms using 
ADASS method and an existing method revealed that ADASS can classify proteins depending on the extent of domain architecture 
level similarity. ADASS is more relevant in cases of proteins with tiny domains having little contribution to the overall sequence 
similarity but contributing significantly to the overall function. 
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Background: 
Organisms have inherent tendency to innovate and create new 
proteins and pathways by gene duplication [1], fusion and 
fission[2] through mechanisms like recombination operating at 
the genomic level[3]. This has resulted in a multitude of protein 
domain architectures having diverse functions within and 
across species[4–7]. Traditionally, proteins are being annotated 
on the basis of evolutionary relationships, like homology, 
deduced indirectly from amino acid sequence similarity. 
Though this strategy works well in the case of single domain 
proteins, sequence identity would not be sufficient to 
distinguish between homologues of multi domain proteins. 

Most of the classifications of multi-domain proteins are based 
on the sequence similarity between the characteristic functional 
domains which are common between the proteins[8]. However, 
multi-domain proteins having high sequence similarity in the 
characteristic domain could still differ functionally, due to the 
presence of different associated domains. There have been 
efforts to incorporate the sequence similarity information from 
such associated domains along with the characteristic domains 
to deduce the overall protein similarity[9]. However due to the 
differences in length of the associated domains the contribution 
of these domains to the overall sequence similarity of the 
proteins vary from domain to domain. The difference in domain 
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architecture of such sequences may not be noticed by simple 
sequence comparisons. Therefore, detection of homology 
relationships in multi-domain proteins on the basis of the 
similarity between the domain architectures is gaining 
attention. 
 
Although there have been many efforts to compare proteins at 
the architectural level, they were not very generalized. First of 
its kind was an alignment-based method [10], where an edit-
distance method was used to calculate the distance between 
two domain architectures and was biased for the domain 
abundance in a protein. Moreover, this method employed 
dynamic programming algorithm to align domain architectures 
by considering each domain family as an alphabet forming a 
“domain sequence”.  This program provides domain distance 
between two proteins as number of unmatched domains 
encountered in such an alignment. However distance between 
completely unrelated proteins is infinity. Hence such alignment 
based methods are useful in understanding orthology, but does 
not perform well in distantly related proteins. Following this, a 
quantitative measure to compare proteins at the domain 
architectural level was developed [11]. This approach 
considered three aspects to quantify the similarity between two 
domain architectures: (1) abundance of shared domains 
between the two proteins, (2) extent of pair-wise reversal of 
domain order and (3) amount of duplication of a shared 
domain. In short, this method utilizes the domain content and 
order to quantify the similarity between domain architectures. 
The parameters for this method were optimized for resolving 
homologues versus non-homologues. Maximum parsimony 
based methods have also been developed to understand fusion 
and fission events by processing species trees [12]. Major 
follow-up for this approach was a method that considers the 
complete ancestral tree (not just the species) of each domain and 
was applied to understand the protein domain architecture 
evolution [13]. Most recently, a domain architecture alignment 
scoring scheme was developed [14] based on domain content 
similarity score that was reported previously [15]. Essentially, 
most of these methods examine the generation of alignment 
based on possible scoring of similarities. Here, we introduce a 
generalized alignment free method to calculate the distance 
between two domain architectures. In this paper we present an 
algorithm that considers domain architecture level similarities 
between sequences and distinguish proteins from their 
homologues, classify homologues in to sub-clusters and most 
importantly detect domain architecture similarity between 
proteins that are seemingly unrelated at the sequence level. 
 
Methodology: 
Algorithm 
ADASS algorithm (Alignment free Domain Architecture 
Similarity Search) compares architectures based on a dataset 
dependent distance score (Figure 1). The algorithm considers 
individual domains in the domain architecture of a protein as 
discrete units and computes a distance score. Each of the 
domain architectures will be divided into triplets and compared 
with triplets from the other domain architecture. Domain 
neighbour-hood information is assessed after establishing an 
exact domain match for central domain of a triplet. Using a 
relative empirical scoring scheme (Figure 2), a score is assigned 
for each triplet compared. The scores are based on events like 
complete match, domain duplication, domain shuffle, partial 

match and no match. The scores for all triplets are summed as 
Pairwise Distance Score (PDS). The PDS is normalized with the 
length of both domain architectures (L1 and L2) and the 
maximum triplet score to obtain a Domain Architecture 
Distance (DAD) score. A DAD score is reported for all domain 
architecture pairs provided as input. Thus, ADASS scores the  
domain architecture pairs in such a way that those differing by 
few domains (architecturally similar) acquire a low DAD score 
where as those differing by many domains  either in number or 
in order (architecturally dissimilar) acquire a high DAD score . 
 

 
Figure 1: All domain architecture (DA) pairs are compared 
pairwise to obtain Domain Architecture Distance (DAD) score. 
Triplets are assessed for different events to give scores Sm – 
match score, Sd – duplication score, Ss – shuffle score, Spm – 
partial-match score, Snm – no-match score. L1 and L2 are 
lengths of domain architectures considered in a pairwise 
comparison. 
 
Domain architecture Datasets 
ADASS algorithm was evaluated using five types of domain 
centric datasets (Figure 3). A centric dataset contains domain 
architectures for a specific domain which is termed as centric 
domain. These architectures are screened on the basis of 
presence of domain duplicates or presence in different 
organisms or the length of architecture. Dataset1, a mixed 
dataset of heterogeneous (varying length) domain architectures 
belonging to two important and evolutionarily unrelated 
protein families - protein kinases (Pkinase - PF00069) and 
helicases (Helicase_C – PF00271) from human, demonstrates the 
performance of the algorithm in distinguishing homologous 
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and non- homologous sequences on the basis of domain 
architectures.  
 
Datasets 2 to 5 were created to estimate the efficiency of the 
algorithm in handling widely different architectures of a 
common domain arising from different levels of taxonomy 
(Datasets2 and 3; for the taxonomy distribution see Table 1 (see 
supplementary material) and from same level of taxonomy 
(Datasets4and 5; human genome).  The domain boundary 
definitions of these architectures were according to the Pfam 
database (release 24) [8]. Dataset 2 consists of 20 different 
homogeneous (same length) domain-centric datasets (For all 
datasets, domains corresponding to each centric dataset see 
Table 1 (see supplementary material) devoid of duplications. 
Dataset 3 has 13 different homogeneous domain centric datasets 
with duplicates. Dataset4 consists of three different 
homogeneous paralogous (all three from human genome) 
domain-centric datasets without duplicates or repeats. Dataset 5 
has 11 different homogeneous paralogous domain-centric 
datasets (all of them are from human genome) and include 
duplication events.  
 

 
Figure 2: Diagrammatic representation of scoring scheme. 
Examples of different cases like No match (both the neighbor 
domains are not matching), incomplete match (one of the 
neighbor domain matches), and complete match (both the 
neighbor domains match) are depicted using domains A, B, C, 
X and Y and their combinations.  
 
Sequence Datasets 
 To test the effectiveness DAD score in detecting similar domain 
architectures, pair-wise amino acid sequence identity was 
considered as a standard. For every centric dataset, the 
corresponding sequence dataset was generated by considering 
only single representative sequence for each of the domain 
architecture present in Pfam (release 24) [8]. The representative 
sequences of domain architectures in a domain-centric dataset 
belong to different organisms ranging from archaebacteria to 
human. The taxonomic source of sequences is summarized in 
Table 1 (see supplementary material). 
 
Hierarchical Clustering and Tree Construction 
Sequence identity benchmark of 40% is widely accepted to 
classify proteins into homologues or non-homologues. Since 
such generalized benchmarking of DAD score is inappropriate 
due to its dependency on the nature of dataset, a hierarchical 
clustering method was adopted to segregate the domain 
architectures in a better way on the basis of architectural 
similarity. The average DAD score (the ADASS computed pair-

wise distances) for all possible pairs of architectures were 
passed through hierarchical clustering algorithm (Neighbor 
Joining (NJ) method) to generate dendrograms using PHYLIP 
package [16]. 
 
Performance Evaluation 
Performance of algorithm was assessed by comparing the pair-
wise Domain Architecture Distance score (DAD score) with the 
pair-wise sequence identity obtained using MatGAT tool  in 
various datasets [17]. DAD score versus sequence identity was 
plotted as a scatter plot. The mid-range of DAD scores in a plot 
was considered as the divider for the architecture pairs into low 
and high DAD score pairs. Sequence identity of 40% was 
considered as the basis of separation between pairs that are 
evolutionarily related (>40%) and unrelated (<40%). Thus, the 
plot was divided in to four quadrants (Quadrant 1 through 4).  
Quadrants 1(high identity, Low DAD score) Quadrant 3 (low 
identity, high DAD score) and Quadrant 4 (low Identity, low 
DAD score) included true positives, whereas Quadrant 2 (high 
identity, high DAD score) included domain architecture pairs 
that are considered as false positives (since the high identity 
pairs are expected to have poor distance score). Pairs falling 
into Quadrant 4 were found to be cases of proteins that are 
evolutionarily diverged at sequence level, yet having similar 
domain architectures. To assess the performance of the 
algorithm, Positive Predictive Value (PPV) was calculated and 
was considered as test statistics for the hypothesis: 
H0: PPV<DAD ScoreMin; H1: PPV >= DAD ScoreMin  
 P values for different datasets were calculated using R 
program.  
 
PPV=Number of True positives/ (Number of True positives+ Number 
of False positives) 
 
Architecture-based clustering diagrams were generated from 
the corresponding sequence. 
 

 
Figure 3: Diagrammatic representation of centric datasets 
analyzed. Few sample domain architectures from a) Pkinase 



BIOINFORMATION open access 

 

ISSN 0973-2063 (online) 0973-8894 (print)   

Bioinformation 9 (10): 491-499 (2013) 494  © 2013 Biomedical Informatics 

 

domain centric and Helicase domain centric architecture 
datasets that form the dataset5; b) DEAD domain centric 
dataset that belong to dataset1, without duplicates or repeats; c) 
PDZ domain centric dataset that belong to dataset2, i.e. with 
duplicated domains allowed; d) PH domain centric dataset that 
belongs to dataset3, i.e., without duplicate or repeats; e) I-set 
domain centric dataset that belongs to dataset4, i.e. with 
duplicated domains allowed. 
 
Results & Discussion: 
DAD score distinguishes homologues from non-homologues in 
more functionally relevant fashion than sequence based 
approach  
Domain architectures, from protein families – Pkinases and 
Helicases, constituting dataset1 were selected in such a way that 
the families were mutually exclusive in terms of their domain 
contents (i.e. no common domain between the families) (Figure 
3a). All domain architecture pairs formed between members of 
the same family obtained a DAD score <1.0 indicating the 
similarities between them where as the pairs formed between 
families acquired the DAD maximum score of 1.0, pointing to 
the complete dissimilarity arising from the absence of  common 
domains between families (Figure 4a). This highlights the 
potential of ADASS in distinguishing multi-domain protein 
homologues from non-homologues having no common domain 
between them. However the DAD score cut off for categorizing 
homologues and non-homologues would depend up on the 
diversity in the domain architectures of the dataset in question.  
 

 
Figure 4: DAD score Vs Percentage identity plot for a) dataset 
1. The pairs formed between the completely unrelated Pkinase 
and Helicase_C obtained the highest DAD score (shown inside 
box); b) HATPase dataset. The pairs formed between 

architectures having either HisKA or DNAgyraseB along with 
HATPase obtained highest DAD score (shown inside box) 
 
A hierarchical clustering using DAD score could bring the 
closest architecture pairs together and distant ones farther in a 
tree diagram which is more informative to categorize similar 
architectures and dissimilar ones. DAD score based domain 
architecture trees, can be used to distinguish homologous 
sequences from completely unrelated (without any common 
domain) non-homologous sequences. This is very much evident 
from the DAD score based clustering diagram (Figure 5a). 
Pkinases and helicases from human, where all protein kinases 
clustered together and all helicases clustered separately 
suggesting strongly that the DAD score is sufficient to 
differentiate the homologues from non-homologues without 
using sequence information. A full length sequence-based 
dendrogram (Figure 5b) failed to cluster the proteins 
architectures in to two separate families.  
 

 
Figure 5: a) Domain architecture based dendrogram of mixed 
dataset5; b) Sequence based clustering of mixed dataset 1; c) 
Domain architecture based dendrogram of HATPase proteins. 
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DAD score can sub divide protein family members into 
functionally close sub-groups  
Multi-domain protein families often possess more than one 
common domain between them.  For instance many 
architectures containing HATPase domain has additional 
domains like HisKA and DNAgyraseB. Architecture pairs 
having either HisKA or DNAgyraseB along with HATPase 
invariably obtained DAD score equal to or more than 0.95 
whereas all the pairs of architectures having both HisKA and 
DNAgyraseB, the score was <0.95 (Figure 4b). The DAD score 
based hierarchical clustering showed a clear distinction 
between HisKA domain containing HATPases and other 
domain architectures that do not contain HisKA domain 
(Figure 5c). This clearly demonstrates ability of ADASS to 
distinguish not only homologous proteins, but also the ability to 
categorize a family of domain architectures in to different 
subfamilies based on the domain content and organization. 
 
Passing low identity sequences of multi-domain proteins 
through hierarchical clustering might not identify subtle 
differences in domain architecture that will have great impact 
on the functional aspects like molecular mechanism or pathway 
involved. In the case of helicase containing domain 
architectures, even though the catalytic domain was conserved 
(DEAD and Helicase_C), due to poor over all sequence identity, 
these architectures were not clustered together in the sequence 
dendrogram (Figure 5b, coloured pink). However, the DAD 
score based dendrogram clustered all such architectures 
together (Figure 5a, coloured pink). A similar trend was 
observed in the case of SNF2 and Helicase_C containing 
domain architectures as well (Light blue in Figure 5a and 5b). 
This suggests that domain architecture based dendrograms can 
define subgroups within protein families, which are 
functionally closer due to the presence of common promiscuous 
domains. Purely sequence identity based clusters might not 
capture such functional similarity within the architectures of a 
family.  
 
Proteins with low sequence identity yet having similar domain 
architectures are identified  
Some architecture pairs, which have poor sequence identities 
(<40%) obtained low DAD scores (members of Quadrant 4 in 
Figure 6a-6e). These are the most interesting cases since such 
architecture level similarities cannot be detected by simple 
sequence similarity measures. Detecting similarity between 
sequences with low sequence identities is very important from a 
functional and evolutionary point of view. In the datasets 
analyzed here, the proportion of such cases was from 0.73% to 
2.09% of the total number of pairs analyzed. Even though the 
frequency of low identity pairs falling in this category is very 
low (Figure 6a-6e), ADASS could detect such cases with 100% 
efficiency in all the five datasets analyzed. For instance, the 
Pfam architectures 4787 (C1_1~C1_1~C2~Pkinase~PkinaseC) 
and 4789 (C1_1~C1_1~Pkinase~PkinaseC) have poor pair-wise 
identities of 20.50% and 21.40 % respectively, with the 
architecture 4792 (C1_1~C1_1~PH~Pkinase). Such poor 
sequence identities would mislead us to conclude that these 
proteins are completely unrelated and non-homologous 
without any common domain between them. To our surprise 
both these pairs obtained a low DAD score that is well below 
midrange pointing to the similarity in architectures (Figure 5a, 
7A, 7B) which was not detectable from the sequence 

relationship (Figure 5b). Gene Ontology (GO) annotations of 
domains using pfam2go mapping revealed similar molecular 
function and biological processes in which they are involved 
[18]. The three domain architectures differ only by a few 
domains namely, C2 that is involved in binding to membrane 
[19] and PH that is involved in protein-protein binding [20]. The 
catalytic function Pkinase activity- here is conserved though the 
substrate specificities and molecular mechanism or localization 
are different. Thus ADASS can be of use in functional 
annotation at greater details. 
 

 
Figure 6: DAD score Vs Percentage identity of individual 
datasets (6a-6e). 
 
In the above mentioned example the component domains are of 
the comparable size. Nevertheless, the component domains of 
an architecture can differ in size and hence in the contribution 
to the overall sequence identity with the sequence of another 
architecture. Such cases, which are seemingly unrelated at the 
level of sequence comparisons, may be related in the 
architecture level. This is being explained in yet another 
example, in the architecture pair, 1792 
(Chromo~Chromo~SNF2_N~Helicase_C) and 1795 
(Chromo~Chromo~SNF2_N~Helicase_C~BRK) where Chromo, 
SNF2 and Helicase_C domains are conserved in the same order, 
but together these three domains form only 1/5th the size of the 
whole protein sequence. The only different domain BRK 
contributes to the sequence level differences to a greater extent 
leading to a very low sequence identity of 20.3%. But the 
functional similarity between these sequences is quite high due 
to the architectural conservation as evident from the DAD score 
(see architecture based dendrogram, Figure 5a, Figure 7F) 
which simple sequence similarity measures would have failed 
to identify.  
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Evaluation of algorithm  
Positive Prediction Value (PPV) of different datasets 
DAD scores for architecture pairs from different centric datasets 
are plotted against percentage identities of corresponding 
representative sequence pair (Figure 6). Positive Predictive 
Value of 1 or very close to 1 were obtained for all the five 
datasets tested in Table1 (see supplementary material) and the 
P-value of PPV for each dataset was highly significant (<0.001) 
at a confidence level of 0.05. This clearly demonstrates the 
ability of the algorithm to handle domain architectures of 
different lengths (Figure 6a), domain architectures from 
different (Figure 6a and 6c) as well as same taxonomic levels 
(Figure 6d and 6e). Figure 6c and 6e indicates that the domain 
architectures containing duplication events can also be 
effectively categorized using DAD score. Further, the following 
observations emphasize on the ability of the program to 
distinguish between related and unrelated domain 
architectures.  
 

 
Figure 7: Objective view of domain architecture similarities 
and differences with respect to DAD score and percentage 
identity. All architecture pairs (A-F) are from dataset 1. Domain 
architecture ID (DA ID) mentioned next to each architecture. 
(Please see text for explanation for each pair). 
 
Evolutionarily related sequences acquired low DAD Score 
The sequences with high sequence level similarity are expected 
to have similar domain architectures. In fact most of the pairs 
with high sequence level similarity (evident from >40% ID) 
showed lower DAD score (<mid-range of DAD score) in all the 
five datasets reflecting the closeness between sequences at the 
domain architecture level as expected. Such pairs were mostly 
orthologues belonging to the same family with similar 
architectures differing only by few domain changes. For 
example, the domain architectures 1456 

(Pkinase~L27~L27~PDZ~Sh3_2~Guanylate_kin) and 61003 
(Pkinase~L27~L27~PDZ) of dataset 1 differ only by last two 
domains, whereas the first four domains are conserved in the 
same order and hence acquired a low DAD score (Figure 7C). 

 
Dissimilar sequences mostly possessed high DAD scores 
The datasets analyzed consisted of diverse architectures and 
hence in general the sequentially dissimilar pairs were the most 
dominant fraction compared to those with similar pairs (See 
graphs in Figure 6a-6e). Among the low ID sequence pairs, 
majority (>85%) were segregated to Q3 (Quadrant 3) due to the 
high DAD score reflecting the architectural differences between 
the pairs. Thus Quadrant 3, as expected, contained pairs with 
poor sequence identity that acquired high DAD score pointing 
to the efficiency of ADASS in identifying dissimilar sequences 
as dissimilar using an architecture based distance score also. 
 
Comparison with the existing strategies  
Previously, there have been attempts to abstract the domain 
content and order of domain architectures and arrive at domain 
architecture distance scores and such comparisons can be 
performed at servers like PDART [11] and DAhunter [21], d-
omix [22] etc. These are useful in comparing homologous 
architectures, whereas ADASS is a general purpose alignment-
free algorithm for estimating similarity relationship between 
domain architectures irrespective of their homology 
relationships and is highly sensitive to distinguish proteins with 
unrelated domain architectures (Figure 5a). Unlike other 
methods developed to detect homology [11, 14, 15]. ADASS can 
handle both homologous as well as non-homologous datasets 
equally well. All the domain architecture distance scores 
developed so far are based on number of the common domains 
and order. However ADASS is differing from others as the 
algorithm systematically scans the neighbourhood of all 
matching domains.  
 
Tools like CDAC, WDAC, Superfamily etc provide a list of 
related domain architectures, domain architecture similarity or 
distance [23–25]. They do not provide a dendrogram of domain 
architectures given a set of sequences or domain architectures. 
PDART server [11] is the only publicly available tool that 
provides dendrograms based on the domain architecture 
distances. Hence, domain architecture distance based trees 
developed by ADASS were compared with those from PDART 
server for a heterogeneous dataset of 16 sample domain 
architectures of Helicase_C family. In the dendrogram 
developed using ADASS, all architectures having Chromo 
domain clustered together (blue box), whereas in PDART 
dendrogram, the blue box members were clustered along with 
other architectures with no Chromo domain (orange box 
members). This shows that the architectures that lack Chromo 
domain failed to cluster together in the dendrogram obtained 
using PDART (Figure 8A and 8B). In another comparison we 
found that WDAC server identifies SNF2_N~ResIII~Helicase_C 
as the best hit (Rank 1) for the query 
PHD~Chromo~Chromo~ResIII~SNF2_N~Helicase_C (Figure 

8D). All the hits obtained from WDAC server for this query 
architecture were used in developing ADASS based 
dendrogram (Figure 8C). According to ADASS the closest 
architecture to the query is 
PHD~Chromo~SNF2_N~Helicase_C which according to 
WDAC acquired only 15th rank. 
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Figure 8: Comparison of domain architecture based dendrogram generated through A) ADASS and B) PDART. Comparison of 
domain architecture based dendrogram generated through; C) ADASS and D) WDAC. 
 
Earlier attempts using maximum parsimony based methods to 
align homologous proteins have demonstrated an alternate 
possibility of domain architecture based clustering of 
proteins[12].  However, such methods become difficult to use 
when the diversity of domain architectures increases in the 
dataset because one has to device matrices that are huge sized, 
as big as the number of domains rather than the number of 
architectures. ADASS does not have such limitation and can 
categorize architectures of any length and domain diversity. 
 
Conclusion: 
Domain architecture level similarities between two proteins, 
can add value to the sequence similarity-based function 
annotation and classification in to families or subfamilies. 
ADASS algorithm compares and classifies protein domain 
architectures by recognizing similarity between the domain 
architectures. This is very useful in studying the evolutionary 
relationship between multi-domain sequences where homology 
cannot be detected from sequence similarity based approaches 
alone. ADASS differ from other algorithms in having 
neighborhood information in its distance score. This approach 
is novel and has been shown to detect similar architectures and 
segregate completely dissimilar or partially similar 

architectures very efficiently enabling subfamily level 
categorization of domain architectures. An architecture based 
similarity scoring like ADASS can also provide more insights 
on the functional similarities or differences compared to simple 
sequence based similarity measures.  
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Supplementary material: 
 
Table 1: Statistical significance of ADASS performance for each dataset. The DAD score range for centric datasets and their mid-
range values are used to distinguish True Positives (TP) and False Positives (FP). Positive Prediction Value (PPV) is used to assess 
the significance of prediction. The sources of domain architectures include mammals (Homo sapiens,Mus musculus, Ratus ratus, Bos 
tarus, Canis sp),  Plants and algae (Arabidopsis thaliana, Zea mays, Oriza sativa, Chlamydomonas sp),Insects/Invertebrates 
(Caenorhabditis  elegans, Drosophila melanogaster, Apis mellifera) Amphibians and fishes (Frog, Danio rerio), Birds (Gallus gallus, 
Taeniopygia guttata), Fungi (Sacchromyces, cerevisae, Shizosacchromyces pombe), Protozoa (Plasmodium falciparum, Trypanosoma brucei), 
bacteria (E.coli, Bacillus subtilis, Vibrio fischeri, Mycoplasma pneumonia) and Archaea (Thermotoga maritime, Methanocaldococcus 
jannaschii, Pyrococcus furiosus). Dataset 1, 4 and 5 contain domain architectures and sequences only from Homo sapiens, whereas 
Dataset 2 and 3 comprises of all above listed organisms. 

Dataset No. of centric-domain  
datasets  

Names of centric domains  DA D Score Range, Mid 
range * 

PPV* 

Dataset1 1 Pkinase & Helicase_C 0.50-1, 0.75 0.98 

Dataset2 20 ABC_tran, Ank, Chromo, DEAD, FERM, fn3, 
HATPase, HisKA, I-set, LRR, MuDR, MULE, PAS, 
PDZ, PH, PHD, Pkinase_Tyr, Retrotrans, RhoGEF, 
RVP_2 

0.63-0.97, 0.80 0.99 

Dataset3 13 Ank, EGF2, EGF_CA, f5-f8, fn3, Helicase_C, I-set, 
LRR, PDZ, Pkinase_Tyr, TPR1, V-set, WD40 

0.44-0.97, 0.71 1.00 

Dataset4 3 Helicase_C, PDZ, PH 0.66-0.97, 0.82 1.00 

Dataset5 11 Ank, EGF, fn3, Helicase_C, I-set, PDZ, PH, PHD, 
Pkinase_Tyr, SH3_1, Sushi 

0.44-0.97, 0.71 0.95 

* Rounded off to two digits after decimal 

 


