open access

www.bioinformation.net

Prediction model

Volume 9(16)

OPTSDNA: Performance evaluation of an efficient
distributed bioinformatics system for DNA

sequence analysis

Mohammad Ibrahim Khan & Chotan Sheel*

Department of Computer Science & Engineering (CSE), Chittagong University of Engineering & Technology (CUET), Chittagong -
4349, Bangladesh; Chotan Sheel - Email: chotan_cuetcse03@yahoo.com; *Corresponding author

Received August 26, 2013; Accepted September 01, 2013; Published September 23, 2013

Abstract:

Storage of sequence data is a big concern as the amount of data generated is exponential in nature at several locations. Therefore,
there is a need to develop techniques to store data using compression algorithm. Here we describe optimal storage algorithm
(OPTSDNA) for storing large amount of DNA sequences of varying length. This paper provides performance analysis of optimal
storage algorithm (OPTSDNA) of a distributed bioinformatics computing system for analysis of DNA sequences. OPTSDNA
algorithm is used for storing various sizes of DNA sequences into database. DNA sequences of different lengths were stored by
using this algorithm. These input DNA sequences are varied in size from very small to very large. Storage size is calculated by this
algorithm. Response time is also calculated in this work. The efficiency and performance of the algorithm is high (in size calculation
with percentage) when compared with other known with sequential approach.

Keywords: Distributed Bioinformatics System, DNA Sequence, Optimal Storage, Sequential Approach, Performance Measurement.

Background:

Distributed Computing (DC) provides a cost effective
framework with efficient execution of a solution on multiple
computers connected by a network. For Distributed
Computing (DC), large tasks are divided into smaller problems
which can then be executed on multiple computers at the same
time independent of each other. The task must be broken up
into independent problems to minimize inter-computers
communication; otherwise distributed computing will not be
effective [1, 2]. Over the past few years, the intermixing of
computer science and the complexity of biology has lead to the
prosperous field of bioinformatics [2]. Advances in molecular
biology and technology for research have facilitated the
process of sequencing of large portions of genomes in various
species. Today computers have made medical research more
efficient and accurate, by using parallel and distributed
computers and complex biological modeling. Bioinformatics, is
one of the newer areas, and has opened our eyes to a whole
new world of biology [1].

ISSN 0973-2063 (online) 0973-8894 (print)
Bioinformation 9(16): 842-846 (2013)

The fusion of computers and biology has helped scientists
learn more about species, especially humans. With the aid of
the computers, we have learned a great deal about genetics,
but there still stand many unanswered questions, that are
being researched today [1]. DNA sequence analysis can be a
lengthy process ranging from several hours to many days. This
paper builds a performance measurement of distributed
system using OPTSDNA storing system algorithm on analysis
of DNA sequence which provides the solution for many
bioinformatics related applications

The overall goal of this paper is to build a performance
measurement of optimal storage of Distributed Bioinformatics
Computing System for DNA (OPTSDNA) sequence analysis
and draw performance curve on storage system and response
time. We compared the measurement data of OPTSDNA
algorithm with sequential approach data. OPTSDNA
algorithm is capable of storing various length of DNA
sequence in a Database by compressing the DNA sequence.
We observed this algorithm by using a single computer and

© 2013 Biomedical Informatics

BIOINFORMATION

multiple computers. Deferent lengths of DNA sequences are
stored in database to compare its response time. For measuring
performance we use our previous work algorithm OPTSDNA

[1].

Different methods had been used to store DNA sequence in
Database. To obtaining an image of a mass-storage device [3]
the sequence of Genome is used Reverse Engineering code.
Reverse engineering files on the mass - storage device is
equivalent to design and maintenance specification. Obtaining
one full human sequence will be technical challenges.
Computers will play a crucial role in the entire process, from
robotics to control experimental equipment to complex
analytical methods for assembling sequence fragments.
Indexing for large sequence Database uses the n-gram wavelet
transformation [4] upon one field and multi-fields index
structure under the relational DBMS environment. Results
show the need to consider index size and search time while
using indexing carefully. Increasing window size decreases the
amount of I/O reference and complexity is O (mn).

Indexing and Retrieval for Genomic Database uses CAFE
indexed scheme [5, 8] and it shows that the indexed
approached results in significant, saving in computationally
intensive local alignment, and that index-based searching is as
accurate as existing exhaustive search scheme and it is better
than BLAST. Dynamic Programming [6, 7] has time and space
complexity of O(nm) for two strings S and Q of lengths n and
m, for database comparisons it will needs matrix of size n * m.
Hence for long sequence and large database this method will

open access

be not practical in term of both space and time. Dictionary
based indexing [6] for a database of sequence Si (i; 1,2,....n),
creates index structure of size n corresponding to database
size, predefining query lower bound length (L) to be equal to
log(n) assumed. Query with larger length will be partitioned
into smaller parts. All substrings of length L mapped to
integers using hasing function and for queries larger than L
split it into sub-queries, then search each sub-query alone and
combine the results. This method indexes all possible strings of
a pre-specified length L. Dictionary based index size is larger
than the database.

The specific objective of this paper for performance analysis of
DNA sequences are given below: (1) Store various sizes of
DNA sequences using OPTSDNA algorithm; (2) Implement
them on loosely couple distributed network such as regular
local area network; (3) We use four, five, and six consecutive
nucleotides division for storage of DNA sequence data; (4)
Calculate the storage size for four, five, and six consecutive
nucleotide divisions of DNA sequence data in Mega Bytes
(MB); (5) The performance of storage system is compared with
sequential approach; (6) Calculate the response time in storage
data.

This paper is organized in five sections. Section 2 discusses the
methodology of OPTSDNA algorithm. The database design of
distributed OPTSDNA algorithm is discussed in section 3.
Section 4 discusses the Experimental Results and Conclusion is
included in section 5.

TTCTCAGGCCCG A
AATGGTGTTATTTAGTTAATGCTTTT

o2 DMA DATA Compress = [S|
DMA Input Show DMNA DMA Break Performance Measurment Exit
15 FormDMAInput EI@
Input DNA: | A A ATGAGTTCTA CEETGEGETTTTACTTGCA AGTCTTTTTTTTCTCTTTGTG

AGACTGGACCTACGTTCA,

TGATTGGTCGTGCAGAATATTT

I Save J |

Close

Figure 1: DNA data input.

Methodology:

Implementation of OPTSDNA Algorithm

A Dot Net based client server system was developed for this
project [9]. OPTSDNA algorithm is developed by using Visual
Basic Dot Net [9] and SQL Server 2008 [10]. Various interface
of OPTSDNA storing system is designed by using Visual Basic
Dot Net and we used database as SQL Server 2008. For
implementing this algorithm required machine tools are: a)
Windows 7, b) SQL Server 2008, c) Visual Studio 2010, d) RAM
2GB etc. In this paper, a client provides the user input from
Graphical User Interface (GUI) and then sends this input to
one or more server computers as directed by the user. The
processing options are shown on Figure 1, Figure 2, Figure 3a
& 3b GUIL. Firstly, we store DNA sequence using Figure 1 GUI
process. We show longer DNA sequence process by using
Figure 2 GUIL We also show no. of break DNA sequence

ISSN 0973-2063 (online) 0973-8894 (print)

Bioinformation 9(16):842-846 (2013) 843

process by using Figure 3a GUI Then we measure the
performance by using Figure 3b GUL

Database Design of Distributed OPTSDNA Algorithms

The distributed algorithm (OPTSDNA) is based on client
server model. For distributed system, the proposed framework
avoids duplicate computations on server machines. The input
of OPTSDNA algorithm is large no. of DNA sequence. Input is
divided into multiple segments such as four, five, and six
nucleotide division. Then the segment generated code which is
we called encode. Then we store in database only encode of
DNA segments.

DNA Segment Encoding
In this part we describe total length of DNA sequence of field’s

entry in database and how the length of such fields is encoded

© 2013 Biomedical Informatics

BIOINFORMATION

and packed into the other segments. We use three tables such
as: Table 1 (see supplementary material) is ‘Original DNA
Data’, Table 2 (see supplementary material) is ‘Break DNA’
and Table 3 (see supplementary material) is ‘Coding Storage’
for encoding.

Experimental Result

Experimental Setup

OPTSDNA storing system is designed by using Visual Basic
Dot Net and we used database as SQL server 2008. For
implementing this algorithm required machine tools are: a)

Beruenes

open access

Windows 7, b) SQL Server 2008, c) Visual Studio 2010, d) RAM
2GB etc.

Space Requirement

For calculating performance first calculate the storing size of
database using OPTSDNA algorithm. Then we compare its
capacity size with sequential approach. Calculate capacity size
for four, five and six nucleotide division segments. Then we
calculate the response time for four, five and six nucleotide
division segment process. Store capacity and decrease of size is
calculated using the following formula: (for formulas please
see supplementary materials).

| I |

ERECTT]

AR T T AR TR TSR T AR T T TR A A A T T TR TR TR T 8 A T 08 T8 T A T A TR A T T AT T
AT TAATT TOOCALG T TACT A8 LG THHRGGT TACCGATCAGATACATEHALSAMDGEEATAAATTT TAGCOD TAGGE TALAD TOCAGTA

CRCRCRCHEN T T T T T T, T s, T S CN RN T T A TTTTT.

ETAS TETAS TE TAC TE TEATE TAS TATE T TE T T TOIGA TS TE THACEH TS TEIES TOH A T TA
T TN T8 00 T o 00 00 5 T 000 TSN TS0 T 08 AR TS T TS T T
T T A T T, T T 0 0 A T M T T O

Cln Dt g Dot Dot D s Dot T Dl oy s T Dol Doy s Dot Dot T g i D s Dot D D P T T)
i T R T T e A T

R R R

CTTCTC T TECE TEC T T ToAC TAG A ARG TC TATATATACATOAT TTCATATTS
AT TG T T T T AAA TG TGGATTTTGTTTG TTTGTTTGTT TG TS
TCCAANAATTCCTTTAATATTTS
TEGAG T TEATOTEGATTTTTTET
SASSSTTAACE TASRRARATTEE

i WS TTTOT

T T TERE N TS 8 T AR T AR SR TR T ACRERER TSN & T IR S,
T TR T T T T T T i T T T A0 AN S8 AT A T A T AN 8T8

[ETTETE il _Hismak
s 3 Al L AT ATT T
oL 4 AR rras AT Teatata [EEEEY
1% L] AR TT == TTTRE T Ly
a0 O AT AT T TE s, i T T, T A A T i
4 1T I

DNA_Break_String
ATTGT
GGTGT
GCGCG
AGTAC

Search

DNA Serial From: |

Show DNA

DMABreak Performance Measurment

Exit

Peformance Result

GTGTC
ATGAT
GAATC
TATGT
AAGGTT
ACGTGT
ACGTAC
GTTTGG
ACACAT

61

The comparative space requirement between sequential
approach and proposed system are given in Table 4 & 5 (see
supplementary material) From Table 4 we observe that in
sequential approach the required size for 1000 DNA sequence
entry in database is 90.06 MB. But in OPTSDNA algorithm
required size is less then sequential approach (shown in Figure
4). From Figure 6, we observe that OPTSDNA algorithm
almost 4221 % (Six Segment Division Nucleotide) size
decreases from sequential approach. If we increase our input
size then percentage of decrease size is increase and space
required is much more than sequential approach. After

ISSN 0973-2063 (online) 0973-8894 (print)

Bioinformation 9(16):842-846 (2013) 844

Figure 3: (a) DNA data compression with generated break code; (b) Performance Measurement of DNA Sequence Entry.

Without break Total Length: 52452 Bytes (51.2227 MB)

No of Break: 2 Length: 78838Bytes{76.9302 MB)
No of Break: 3 Length: 53268Bytes(52.0195 MB)
No of Break: 4 Length: 40545Bytes(33.5947 MB)
No of Break: 5 Length: 34869Bytes(34.0518 MB)
No of Break: 6 Length: 31897Bytes(31.1434 MB)

analysis from Table 4 and Figure 5, our paper proved that
OPTSDNA algorithm is much more efficient than sequential
approach and others.

We know in compressed entry the required time is higher than
the normal entry. Our OPTSDNA algorithm uses encoding
technique. In encoding technique storage system response time
is higher than the sequential approach. But from Table 5, we
observe that the needed time in OPTSDA system is not much
larger than sequential approach (only 5 ms is lager in Six
Segment Division Nucleotide).If we use the speedy processor
then we decrease the response time easily. Performance

© 2013 Biomedical Informatics

BIOINFORMATION

analysis of comparative response time for storing DNA is
shown in Figure 6.

B 320Nt Ap0roach|

Bd-Ezgment ey, Div.

B S-Ezgment hay, Div.

B &-Ezgment haw, Div.

Siee i Mepa Byles (M)

100 200 300 400 500 600 700 800 =0 1000

nput DHA

Figure 4: Performance Measurement of OPTSDNA Algorithm

5

{3 severt Yes. Dhison

| BBsegrert Neu. Dhison

e of Dacroase Sko
.

10 L]

5 |25t | 2| na |ns | B |ua | B3| 68|

5

£k 59.15{‘-?3,75 ga|aslasan

gt INA

Figure 5: Performance Analysis of Percentage of Decrease Size

open access

160 |
lao i L
120 ® Sequential Approach
100 -

80 +

60

a0 +

20 +

0 ‘

W 4-Segment Neo. Div

Time (ms)

B 5-Segment Neo. Div.

W G- Segment Neo. Div

~P°w°°~?°>°°5°°@°«°°s°°q°°@°°

Input DNA

Figure 6: Performance Analysis of Comparative Query Time
Requirement for Storing DNA Sequence.

Conclusion:

The algorithm helps to store DNA sequences of varying length
in the database. OPTSDNA gives the low CPU cost which is an
important factor of query performance. The advantage of
OPTSDNA is that the percentage of decrease in size is
increased even if the amount of DNA sequence is increased.
Data compression saves costs and compression has (almost) no
additional CPU overhead in this case. OPTSDNA (1) removes
the duplication of DNA data entry in the database; (2) requires
fewer bytes than original data to represent in database; (3) save
I/O bandwidth and disk size; (4) use multi dictionary based
database for DNA sequence entry.

References:

[1] Sheel C et al. International Journal of Computational
Bioinformatics and In Silico Modeling. 2013 2: 106

[21 R Kumar etal. IEEE Spectrum. 2007 7: 358

[31 Wohoush SM & Saheb MH, International Journal of
Biometrics (IJBB), 2011 5: 267

[4] Robbbins R], Bioinformatics Research. 1994 5: 258

[5] Williams HE & Zobel], Nucleic Acid Research. 2002 20:
203

[6] Kahveci T & Singh A, A Singh Pacific Symposium on Bio-
computing. 2003 8: 303

[71 Rashid NAA et al. IEEE Spectrum. 2006 6: 699

[8] Ozturk O & Ferhatosmanoglu H, Proceeding of the Third
IEEE Symposium on Bioinformatics and Bioengineering
(BIBE'03), 2003.

[9] Petroutsos E. “Mastering Visual Basic.NET”, 2nd Edition,

2006

Mistry R, “Microsoft SQL Server 2008 Management and

Administration”, McGraw Hill Edition, 2006.

[10]

Edited by P Kangueane
Citation: Khan & Sheel, Bioinformation 9(16): 842-846 (2013)

License statement: This is an open-access article, which permits unrestricted use, distribution, and reproduction in any medium,
for non-commercial purposes, provided the original author and source are credited

ISSN 0973-2063 (online) 0973-8894 (print)

Bioinformation 9(16):842-846 (2013) 845

© 2013 Biomedical Informatics

BIOINFORMATION open access

Supplementary material:

Formulas: Store capacity and decrease of size is calculated using the following formula

Store Capacity t t
=m E Dt +m E Ct +n ZS: Ss
i=1 j=1 kK —1
t t S
=m(E Dt + E Ct)+n E SS . [Ref. 1]
i=1 j=1 k=
Size Decrease SequentialdpproachSize — N _ SegmentsNiucleotideDivisionSize 10056
e 2
SeguentialdpproachSize
Table 1: Attributes and length in Bytes of “Original DNA Data”
Attribute Type Length (B)
DNA_SL Auto Increment 4
DNA Text 200
Table 2: Attributes and length in Bytes of “Break DNA”
Attribute Type Length (B)
Break_DNA Text 6
Code Auto Increment 3
Table 3: Attributes and length in Bytes Of “Coding Storage”
Attribute Type Length (B)
Input Number 4
No_Break Number 1
Col_N Number 3
Table 4: Comparative Space Requirement
DNA Size in Mega Bytes (MB)
Input Sequential OPTSDNA Algorithm
Approach 4 - Segment Division 5 - Segment Division 6 - Segment Division
Nucleotide Nucleotide Nucleotide
100 9.07 7.83 7.89 7.96
200 22.34 17.86 16.37 15.75
300 33.18 26.01 23.09 21.79
400 44.32 34.4 29.86 27.61
500 51.22 39.59 34.05 31.15
600 58.52 45.09 38.54 35.24
700 66.88 51.42 43.67 39.87
800 76.48 58.73 49.51 449
900 83.23 63.86 53.59 484
1000 90.06 68.56 57.87 52.05
Table 5: Comparative Query Time Requirement for Storing DNA Sequence
DNA Size in Mega Bytes (MB)
Input Sequential OPTSDNA Algorithm
Approach 4 - Segment Division 5 - Segment Division 6 - Segment Division
Nucleotide Nucleotide Nucleotide
100 9.07 7.83 7.89 7.96
200 2234 17.86 16.37 15.75
300 33.18 26.01 23.09 21.79
400 44.32 34.4 29.86 27.61
500 51.22 39.59 34.05 3115
600 58.52 45.09 38.54 35.24
700 66.88 51.42 43.67 39.87
800 76.48 58.73 49.51 449
900 83.23 63.86 53.59 48.4
1000 90.06 68.56 57.87 52.05

ISSN 0973-2063 (online) 0973-8894 (print)
Bioinformation 9(16):842-846 (2013) 846 © 2013 Biomedical Informatics

