

open access www.bioinformation.net Software

 Volume 11(5)

ISSN 0973-2063 (online) 0973-8894 (print)

Bioinformation 11(5): 267-271 (2015) 267 © 2015 Biomedical Informatics

Compression of Large genomic datasets using
COMRAD on Parallel Computing Platform

Christopher Leela Biji1, Manu K Madhu2, Vineetha Vishnu3, Satheesh Kumar K4, Vijayakumar2
& Achuthsankar S Nair1*

1Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram; 2School of Computer
Science, Mahathma Gandhi University, Kottayam; 3Infosys Technologies, Trivandrum; 4Department of Future Studies, University
of Kerala, Thiruvananthapuram; Achuthsankar - Email: sankar.achuth@gmail.com; *Corresponding author

Received May 04, 2015; Revised May 06, 2015; Accepted May 06, 2015; Published May 28, 2015

Abstract:

The big data storage is a challenge in a post genome era. Hence, there is a need for high performance computing solutions for
managing large genomic data. Therefore, it is of interest to describe a parallel-computing approach using message-passing library
for distributing the different compression stages in clusters. The genomic compression helps to reduce the on disk“foot print” of
large data volumes of sequences. This supports the computational infrastructure for a more efficient archiving. The approach was
shown to find utility in 21 Eukaryotic genomes using stratified sampling in this report. The method achieves an average of 6-fold
disk space reduction with three times better compression time than COMRAD.

Availability: The source codes are written in C using message passing libraries and are available @https:// sourceforge.net/
projects/ comradmpi/files / COMRADMPI/

Keywords: Genome compression, Sequence analysis, Parallel Computing, Big data storage, Genome Analysis

Background:
With the advent of massively parallel computing techniques
sequencing technologies generates huge chunks of genome
data in peta byte scale [1]. This in turn poses new challenge of
managing, processing and analysing the generated data [2].

Apart from this the sequencing cost is halved every 5 months
where as storage cost is halved for every 14 months [3]. The
DNA specific compression tools can be mainly categorized in
to reference based compression tools and reference free
compression tools [4]. Reference based compression tools
require a reference genome, while reference free compression
tools capture the redundancies within the dataset for a
compact representation [5]. Reference free compression
methods involves many different approaches like naive
encoding, statistical, dictionary, grammar and
transformational methods [6].

Many computationally intensive problems in computational
biology like ClustalW has already been well adapted to high
performance computing [7]. Though the distribution of various

tasksor genome data over many different computers is
difficult, genomic revolution trends demand for high
performance computing solutions for data storage and
management [8]. Compression algorithm for large dataset
requires a vast processing power and memory, which is rather
difficult to process on desktop computers [9]. The compression
algorithm COMRAD (Compression using Redundancy of
DNA sets) is one of the best algorithm reported in the
literature in terms of compression level as well as data size.
The best compression achieved is of 0.25 bpb for S.Cerevisiae
genomes and in this work, our aim is to reduce the
computational time of COMRAD while maintaining the
compression achieved using parallel computing techniques
[10].

Methodology:
Materials
COMRAD is a sequential iterative algorithm designed for
compressing DNA sequence. Through a sequential multiple
passes over the input data repeat substrings are captured for

BIOINFORMATION open access

ISSN 0973-2063 (online) 0973-8894 (print)

Bioinformation 11(5):267-271 (2015) 268 © 2015 Biomedical Informatics

the creation of corpus-wide dictionary. This stage is further
followed by the replacement, clean up and encoding of the
files in a sequential manner for compressing large dataset. The
outline of standard COMRAD algorithm includes the
following stages [10].

Figure 1: Flow Chart of Compression of Large Genome Dataset
using COMRAD on Parallel Computing Platform

Algorithm
1: Create the frequency dictionary D1 of all L length substring,
with frequency of at least F, for the input DNA sequences S0
2: Encode the input sequences S0 to get sequences S1
3: k← 2
4: while the dictionary continues to grow do
5: Create the frequency dictionary Dk of all substring matching
pattern in P, with the frequency at least F, for the input
sequences Sk-1
6: Encode the input sequences Sk-1 to get sequences Sk
7: k<- k+1
8: end while
9: Cleanup Dictionary D to remove infrequent non terminals
and make numbering consecutive

COMRAD implementation use only a single core for
processing the different compression stages which result in a
long run time for compressing large DNA data set in gigabytes
range. For instance, while processing malusdomestica genome,
75% of time is utilized for codebook creation, substitution,

clean up and encoding stages. Considering the huge volume
of data generated, there is a need to create frameworks for
storing the large genome dataset through parallel computing
approaches for saving the compression time. But, the current
COMRAD compression algorithm is not adapted to high
performance computing. Implementation of parallel
algorithms can effectively utilize the resource and will
certainly improve the compression time.

In the current study, our objective is to reduce the
computational time by parallelizing the COMRAD algorithm.
As a first step in this direction we introduce data parallelism
by dividing equally the whole genome into n batches and each
batch is processed simultaneously by a processor in the cluster
computer. Further the parallelization of substitution, clean up
and encoding stages were also incorporated. As the inter
processor communication is meagre, the proposed algorithm
can be put into embarrassingly parallel algorithm. The
experimental model involves a MPI (Message Passing
Interface) Communication world with 12 processors. Fgure 1
shows the flow chart of proposed compression algorithm.
Parallelism steps involved in the replacement of k-mers by non-
terminals, clean up and Huffman encoding of each batches are
carried out with Message Passing Interface (MPI) standard.
This helps to turn out results more rapidly. The phases
involved during iteration include

k-mer Pattern
In the proposed framework, initially the large genomes files
are split into batches and allocate each batch of files to each
processor. The redundant features of genomes are captured
using an extensive k-mer analysis. For space efficiency k-mers
are stored in bit encoded form using hash table.

Code book Generation
The different processors will capture the repeated k-mers are
added to a common dictionary at the master computer. The
dictionary is further updated in recurring with the
combination of DNA symbols and non-terminals until there is
no more frequent k-mers. Figure 2 shows the example of the
code book generation.

Figure 2: An example showing the code book generation for an
input string with string length, L=2 and threshold frequency
F=2

BIOINFORMATION open access

ISSN 0973-2063 (online) 0973-8894 (print)

Bioinformation 11(5):267-271 (2015) 269 © 2015 Biomedical Informatics

Code book Pattern Generation
The algorithm use the feature of COMRAD for defining a set of
patterns to detect such that a given substring will match to
only one of the patterns or none. On detection of a specific
pattern the code book will be updated.

Substitution
The most frequency substrings which exceeds the threshold
frequency limit are replaced with non-terminal symbol as
unique identifiers.

Clean Up
In the dictionary cleanup step, the algorithm replaces all non-
terminals not occurring at least F times with their original
substring by allotting the job to different processor which
further helps to reduce the time effectively.

Huffman Encoding
The final stage involves Huffman encoding of the final string
and the codebook. The most frequent symbols are replaced
using fewer binary bits and less frequent symbol with higher
binary bits there by helping to have substantial reduction in
size.

Dataset Selection
The dataset is prepared based on a stratified sampling
procedure, as the NCBI (National Center for Biotechnology
Information) database support a classification of genome. The
designed dataset includes input file size from 48 MB to 3 GB.
The data of the speedup test comprises of the stratified sample
of higher order Eukaryotic genomes of Mammals, Birds,
Fishes and plants - Bos Taurus, Felis catus, Gorilla gorilla, Homo
sapiens, Mus musculus, Gallus gallus, Taeniopygia guttata, Danio
rerio, Oryzias latipes, Arabidopsis thaliana, Citrus sinensis, Fragaria
vesca, Malus domestica, Oryza brachyantha, Solanum lycopersicum
and Zea mays.

Result & Discussion:
The experiments are run over Rocks cluster (Rocks version 6.1
(Mamba) with Cent OS 6.3-64 bit version) which is an
implementation of "Beowulf" cluster, running Sun Grid
scheduler for job submissions. Each node is a dual six-core
Intel®XeonE5645 series 2.40GHz rack server with 64GB RAM.
The performance of Genome Compression using parallel
computing tool is analyzed based on the Compression run
time (Sec), Compression in bits per base (bpb) and Speedup
ratio (S) [10,7]. Compression in bits per base and Speedup ratio
is defined as

CB=
Compressed size in bits

Total No:of bases in the sequence

Speedup ratio=
Serial Compression time

Parallel Compression time

Figure 3 shows the compression time improvement and
speedup ratio for Homospaiens (Mammals), Malus-domestica
(Plants), Gallus gallus(Bird) and Danio rerio (Fishes) in
developed algorithm. Experiment is repeated after splitting the
whole genome equally between different processors on the
cluster from n=2 to 12. As the number of processors is
increased, the elapsed wall time is reduced. The sequential
COMRAD require 8 hours, 91 minutes , 86 minutes and 41

minutes to effectively compress the homospaiens, danio rerio,
gallus gallus and malus domestica genome but the implemented
developed algorithm could effectively compress it in just 3
hours, 30 minutes, 29 minutes and 15 minutes.

Figure 3: Compression time and speedups for Compression of
Large Genomic Datasets using COMRAD on Parallel
Computing Platform for selected sample data set with size in
MB as a function of number of processors.

The proposed method is competitive in terms of compression
time to the sequential compression COMRAD algorithm. We
observe that an average compression run time of three times
better than sequential COMRAD. We further extended the
experiemental analysis by appending more dataset together.
While adding more dataset, redundancy with in the dataset is
increased and the developed algorithm was able to compress
multliple files relatively faster than COMRAD while
maintaining the same compression. Among the list of land
plants Arabidopsis thaliana, Fragaria vesca, Oryza brachyantha
have relatively less repeat patterns with the index of
repetitiveness 0.14, 0.03, 0.05 and 0.06 as depicted in Table 1

(see supplementary material) [11]. Hence individually the
sequences are hard to compress. The individual genome
reported a compression of 2.13 bpb, 1.99 bpb, 2.02 bpb
and1.92bpb respectively using COMRAD. But when all the
plants genomes in the sample dataset are pooled up the overall
compression improved to 1.34 bpb both in COMRAD and
developed algorithm using parallel computing plat form. But
the elaspsed time for COMRAD is 6 hours for compressing the
plant genomes of size 5.2 GB. While COMRAD using parallel
computing technique took just 2 hours for compressing the
plant genomes, which shows the advantage of newely
developed algorithm. Yet another advance of pooling the
dataset is that dictionary size almost remain same at 155 MB,
even though input dataset size varied for each experiment. So
even if we further append the dataset, the average

BIOINFORMATION open access

ISSN 0973-2063 (online) 0973-8894 (print)

Bioinformation 11(5):267-271 (2015) 270 © 2015 Biomedical Informatics

compression achieved will be maintained with the advantage
of compression time.

Conclusion:

We have shown a parallel computing approach for
compressing large genome dataset. The results of our
experimental studies demonstrated that parallel computing
algorithms are worthy alternatives which can pave a new
direction for effective genome data storage and management
system. We have scaled the COMRAD algorithm tobe
adaptable in a high performance computing multicore
processors. There is approximately 65% of compression time
improvement with the parallelization of substitution stage,
clean up and Huffman encoding stage.

Acknowledgement:
We thank the Campus Computing facility, University of Kerala
especially Mr Deelip Kumar, Systems Manager for all the
technical support.

Funding: This work was funded by State Inter University
Centre of Excellence in Bioinformatics, University of Kerala,
Thiruvananthapuram, India.

Reference:

[1] O’Driscoll A et al. J Biomed Inform. 2013 46: 774 [PMID:
23872175]

[2] Marx V, Nature 2013 498 : 255 [PMID: 23765498]
[3] Koboldt DC et al. Brief Bioinform. 2010 11: 484 [PMID:

20519329]
[4] Rozov R et al. BMC Bioinformatics 2014 15: S7 [PMID:

25252952]
[5] Hsi-Yang Fritz M et al. Genome Res. 2011 21: 734 [PMID:

21245279]
[6] Zhu Z et al. Brief Bioinform 2015 16: 1 [PMID: 24300111]
[7] Li KB, Bioinformatics 2013 19: 1585 [PMID: 12912844]
[8] Schadt EE et al. Nat Rev Genet. 2010 11: 647 [PMID:

20717155]
[9] Pinho AJ & Pratas D, Bioinformatics 2014 30: 117 [PMID:

24132931]
[10] Kuruppu S et al. IEEE/ACM Trans Comput Biol Bioinfor.

2012 9: 137 [PMID: 21576758]
[11] Haubold B & Wiehe T, BMC Bioinformatics 2006 7: 541

[PMID: 17187668]

Edited by P Kangueane
Citation: Biji et al, Bioinformation 11(5): 267-271 (2015)

License statement: This is an open-access article, which permits unrestricted use, distribution, and reproduction in any medium,
for non-commercial purposes, provided the original author and source are credited

BIOINFORMATION open access

ISSN 0973-2063 (online) 0973-8894 (print)

Bioinformation 11(5):267-271 (2015) 271 © 2015 Biomedical Informatics

Supplementary material:

Table 1: Index of repetitiveness for the Genome

No Genome dataset Genome size in MB Indexof repetitiveness

1 Arabidopsis thaliana- (ATL) 115.3 0.14
2 Citrus sinensis(CSL-) 231.3 0.20
3 Fragariavesca (FVL) 191.8 0.03
4 Malusdomestica(MDL) 1843.2 0.32
5 Oryzabrachyantha(OBL) 242.7 0.05
6 Solanumlycopersicum(SLL) 735.2 0.08
7 Zea mays(ZML) 1945.6 0.30
8 Daniorerio(DRF) 1228.8 0.21
9 Oryzias_latipes(OLF) 661.6 0.09
10 Gallus gallus(GGB) 976.1 0.01
11 Taeniopygiaguttata (TGB) 949.9 0.02
12 Apis_mellifera (AMI) 196.8 0.02
13 Bombus_terrestris(BTI) 206.4 0.02
14 Drosophila melanogaster (DMI) 116.4 0.14
15 Drosophila_pseudoobscura(DPI) 48.9 0.02
16 Tribolium_castaneum (TCI) 133.2 0.04
17 Bostaurus(BTM) 2560 0.27
18 Feliscatus(FCM) 2252.8 0.03
19 Gorilla gorilla (GGM) 2867.2 0.22
20 Homosapiens (HSM) 2969.2 0.23
21 M musculus (MSM) 2355.2 0.04

