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Abstract: 

The big data storage is a challenge in a post genome era. Hence, there is a need for high performance computing solutions for 
managing large genomic data. Therefore, it is of interest to describe a parallel-computing approach using message-passing library 
for distributing the different compression stages in clusters. The genomic compression helps to reduce the on disk“foot print” of 
large data volumes of sequences. This supports the computational infrastructure for a more efficient archiving. The approach was 
shown to find utility in 21 Eukaryotic genomes using stratified sampling in this report. The method achieves an average of 6-fold 
disk space reduction with three times better compression time than COMRAD. 
 
Availability: The source codes are written in C using message passing libraries and are available @https:// sourceforge.net/ 
projects/ comradmpi/files / COMRADMPI/ 
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Background: 
With the advent of massively parallel computing techniques 
sequencing technologies generates huge chunks of genome 
data in peta byte scale [1]. This in turn poses new challenge of 
managing, processing and analysing the generated data [2]. 

Apart from this the sequencing cost is halved every 5 months 
where as storage cost is halved for every 14 months [3]. The 
DNA specific compression tools can be mainly categorized in 
to reference based compression tools and reference free 
compression tools [4]. Reference based compression tools 
require a reference genome, while reference free compression 
tools capture the redundancies within the dataset for a 
compact representation [5].  Reference free compression 
methods involves many different approaches like naive 
encoding, statistical, dictionary, grammar and 
transformational methods [6].  
 
Many computationally intensive problems in computational 
biology like ClustalW has already been well adapted to high 
performance computing [7]. Though the distribution of various 

tasksor genome data over many different computers is 
difficult, genomic revolution trends demand for high 
performance computing solutions for data storage and 
management [8]. Compression algorithm for large dataset 
requires a vast processing power and memory, which is rather 
difficult to process on desktop computers [9]. The compression 
algorithm COMRAD (Compression using Redundancy of 
DNA sets) is one of the best algorithm reported in the 
literature in terms of compression level as well as data size. 
The best compression achieved is of 0.25 bpb for S.Cerevisiae 
genomes and in this work, our aim is to reduce the 
computational time of COMRAD while maintaining the 
compression achieved using parallel computing techniques 
[10]. 
 
Methodology: 
Materials  
COMRAD is a sequential iterative algorithm designed for 
compressing DNA sequence. Through a sequential multiple 
passes over the input data repeat substrings are captured for 
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the creation of corpus-wide dictionary. This stage is further 
followed by the replacement, clean up and encoding of the 
files in a sequential manner for compressing large dataset.  The 
outline of standard COMRAD algorithm includes the 
following stages [10]. 
 

 
Figure 1: Flow Chart of Compression of Large Genome Dataset 
using COMRAD on Parallel Computing Platform 
 
Algorithm  
1: Create the frequency dictionary D1 of all L length substring, 
with frequency of at least F, for the input DNA sequences S0 
2: Encode the input sequences S0 to get sequences S1 
3: k← 2  
4: while the dictionary continues to grow do  
5: Create the frequency dictionary Dk of all substring matching 
pattern in P, with the frequency at least F, for the input 
sequences Sk-1  
6: Encode the input sequences Sk-1 to get sequences Sk 
7: k<- k+1 
8: end while  
9: Cleanup Dictionary D to remove infrequent non terminals 
and make numbering consecutive 
 
COMRAD implementation use only a single core for 
processing the different compression stages which result in a 
long run time for compressing large DNA data set in gigabytes 
range. For instance, while processing malusdomestica genome, 
75% of time is utilized for codebook creation, substitution, 

clean up and encoding stages.  Considering the huge volume 
of data generated, there is a need to create frameworks for 
storing the large genome dataset through parallel computing 
approaches for saving the compression time. But, the current 
COMRAD compression algorithm is not adapted to high 
performance computing. Implementation of parallel 
algorithms can effectively utilize the resource and will 
certainly improve the compression time. 
 
In the current study, our objective is to reduce the 
computational time by parallelizing the COMRAD algorithm. 
As a first step in this direction we introduce data parallelism 
by dividing equally the whole genome into n batches and each 
batch is processed simultaneously by a processor in the cluster 
computer. Further the parallelization of substitution, clean up 
and encoding stages were also incorporated. As the inter 
processor communication is meagre, the proposed algorithm 
can be put into embarrassingly parallel algorithm. The 
experimental model involves a MPI (Message Passing 
Interface) Communication world with 12 processors. Fgure 1 
shows the flow chart of proposed compression algorithm. 
Parallelism steps involved in the replacement of k-mers by non-
terminals, clean up and Huffman encoding of each batches are 
carried out with Message Passing Interface (MPI) standard. 
This helps to turn out results more rapidly. The phases 
involved during iteration include 
 
k-mer Pattern 
In the proposed framework, initially the large genomes files 
are split into batches and allocate each batch of files to each 
processor. The redundant features of genomes are captured 
using an extensive k-mer analysis. For space efficiency k-mers 
are stored in bit encoded form using hash table.   
 
Code book Generation 
The different processors will capture the repeated k-mers are 
added to a common dictionary at the master computer. The 
dictionary is further updated in recurring with the 
combination of DNA symbols and non-terminals until there is 
no more frequent k-mers. Figure 2 shows the example of the 
code book generation. 
 

 
Figure 2: An example showing the code book generation for an 
input string with string length, L=2 and threshold frequency 
F=2 
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Code book Pattern Generation 
The algorithm use the feature of COMRAD for defining a set of 
patterns to detect such that a given substring will match to 
only one of the patterns or none. On detection of a specific 
pattern the code book will be updated. 
 
Substitution 
The most frequency substrings which exceeds the threshold 
frequency limit are replaced with non-terminal symbol as 
unique identifiers.   
 
Clean Up 
In the dictionary cleanup step, the algorithm replaces all non-
terminals not occurring at least F times with their original 
substring by allotting the job to different processor which 
further helps to reduce the time effectively.  
 
Huffman Encoding 
The final stage involves Huffman encoding of the final string 
and the codebook.  The most frequent symbols are replaced 
using fewer binary bits and less frequent symbol with higher 
binary bits there by helping to have substantial reduction in 
size.  
 
Dataset Selection 
The dataset is prepared based on a stratified sampling 
procedure, as the NCBI (National Center for Biotechnology 
Information) database support a classification of genome. The 
designed dataset includes input file size from 48 MB to 3 GB. 
The data of the speedup test comprises of the stratified sample 
of higher order Eukaryotic genomes of  Mammals, Birds, 
Fishes and plants - Bos Taurus, Felis catus, Gorilla gorilla, Homo 
sapiens, Mus musculus, Gallus gallus, Taeniopygia guttata, Danio 
rerio, Oryzias latipes, Arabidopsis thaliana, Citrus sinensis, Fragaria 
vesca, Malus domestica, Oryza brachyantha, Solanum lycopersicum 
and Zea mays.  
 
Result & Discussion: 
The experiments are run over Rocks cluster (Rocks version 6.1 
(Mamba) with Cent OS 6.3-64 bit version) which is an 
implementation of "Beowulf" cluster, running Sun Grid 
scheduler for job submissions. Each node is a dual six-core 
Intel®XeonE5645 series 2.40GHz rack server with 64GB RAM.  
The performance of Genome Compression using parallel 
computing tool is analyzed based on the Compression run 
time (Sec), Compression in bits per base (bpb) and Speedup 
ratio (S) [10,7]. Compression in bits per base and Speedup ratio 
is defined as  
 

CB=
Compressed size in bits

Total No:of bases in the sequence
 

Speedup ratio=
Serial Compression time

Parallel Compression time
 

 
Figure 3 shows the compression time improvement and 
speedup ratio for Homospaiens (Mammals), Malus-domestica 
(Plants), Gallus gallus(Bird) and Danio rerio (Fishes) in  
developed algorithm. Experiment is repeated after splitting the 
whole genome equally between different processors on the 
cluster from n=2 to 12. As the number of processors is 
increased, the elapsed wall time is reduced. The sequential 
COMRAD require  8 hours, 91 minutes , 86 minutes and 41 

minutes to effectively compress the homospaiens, danio rerio, 
gallus gallus and malus domestica genome but the implemented  
developed algorithm could effectively compress it in just 3 
hours, 30 minutes, 29 minutes and 15 minutes. 
 

 
Figure 3: Compression time and speedups for Compression of 
Large Genomic Datasets using COMRAD on Parallel 
Computing Platform for selected sample data set with size in 
MB as a function of number of processors. 
 
The proposed method is competitive in terms of compression 
time to the sequential compression COMRAD algorithm. We 
observe that an average compression run time of three  times 
better than sequential COMRAD.  We further extended the 
experiemental analysis by appending more dataset together. 
While adding more dataset, redundancy with in the dataset is 
increased and the developed algorithm was able to compress 
multliple files relatively faster than COMRAD while 
maintaining the same compression.  Among the list of land 
plants Arabidopsis thaliana, Fragaria vesca, Oryza brachyantha 
have relatively less repeat patterns with the index of 
repetitiveness 0.14, 0.03, 0.05 and 0.06 as depicted in Table 1 

(see supplementary material) [11]. Hence individually the 
sequences are hard to compress. The individual genome 
reported a compression of 2.13 bpb, 1.99 bpb, 2.02 bpb 
and1.92bpb respectively using COMRAD.  But when all the 
plants genomes in the sample dataset are pooled up the overall 
compression improved to 1.34 bpb both in COMRAD and 
developed algorithm using parallel computing plat form. But 
the elaspsed time for COMRAD is 6 hours for compressing the 
plant genomes of size 5.2 GB. While COMRAD using parallel 
computing technique took just 2 hours for compressing the 
plant genomes, which shows the advantage of newely 
developed algorithm.  Yet another advance of pooling the 
dataset is that dictionary size almost remain same at 155 MB, 
even though input dataset size varied for each experiment. So 
even if we further append the dataset, the average 
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compression achieved will be maintained with the advantage 
of compression time. 
 
Conclusion: 

We have shown a parallel computing approach for 
compressing large genome dataset. The results of our 
experimental studies demonstrated that parallel computing 
algorithms are worthy alternatives which can pave a new 
direction for effective genome data storage and management 
system. We have scaled the COMRAD algorithm tobe 
adaptable in a high performance computing multicore 
processors. There is approximately 65% of compression time 
improvement with the parallelization of substitution stage, 
clean up and Huffman encoding stage. 
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Supplementary material: 
 
Table 1: Index of repetitiveness for the Genome 

No Genome dataset  Genome size in MB Indexof repetitiveness 

1 Arabidopsis thaliana- (ATL) 115.3 0.14 
2 Citrus sinensis(CSL-) 231.3 0.20 
3 Fragariavesca (FVL) 191.8 0.03 
4 Malusdomestica(MDL) 1843.2 0.32 
5 Oryzabrachyantha(OBL) 242.7 0.05 
6 Solanumlycopersicum(SLL) 735.2 0.08 
7 Zea mays(ZML) 1945.6 0.30 
8 Daniorerio(DRF) 1228.8 0.21 
9 Oryzias_latipes(OLF) 661.6 0.09 
10 Gallus gallus(GGB) 976.1 0.01 
11 Taeniopygiaguttata (TGB) 949.9 0.02 
12 Apis_mellifera (AMI) 196.8 0.02 
13 Bombus_terrestris(BTI) 206.4 0.02 
14 Drosophila melanogaster (DMI) 116.4 0.14 
15 Drosophila_pseudoobscura(DPI) 48.9 0.02 
16 Tribolium_castaneum (TCI) 133.2 0.04 
17 Bostaurus(BTM ) 2560 0.27 
18 Feliscatus( FCM) 2252.8 0.03 
19 Gorilla gorilla (GGM) 2867.2 0.22 
20 Homosapiens (HSM) 2969.2 0.23 
21 M musculus (MSM ) 2355.2 0.04 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


