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Abstract: 

The predicted secondary structural states are not cross validated by any of the existing servers. Hence, information on the level of 
accuracy for every sequence is not reported by the existing servers. This was overcome by NNvPDB, which not only reported 
greater Q3 but also validates every prediction with the homologous PDB entries. NNvPDB is based on the concept of Neural 
Network, with a new and different approach of training the network every time with five PDB structures that are similar to query 
sequence. The average accuracy for helix is 76%, beta sheet is 71% and overall (helix, sheet and coil) is 66%.  
 
 
Availability: http://bit.srmuniv.ac.in/cgi-bin/bit/cfpdb/nnsecstruct.pl 
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Background: 
Protein secondary structure prediction plays a vital role and 
acts as an intermediate in solving tertiary structures; which 
provides an insight in to protein function [1, 2]. Artificial 
Neural Networks (ANN) based prediction provides accurate 
results when compared to other methods [3]. ANN is a 
simplified computational model that is capable of pattern 
recognition, feature extraction and image mapping. These are 
based on neural biology concepts, where signals are passed 
between individual nodes using weighted connection links; and 
the activation function used by each node determines the 
output [4].  
 
Methodology: 
Among many existing servers PSIPRED uses two feed forward 
neural network on PSI-BLAST output [5]. YASPIN based on 
ANN and HMM uses SCOP1.65 to train and test the network 
and the datasets are built using PDB [3]. Cfpred, available at ( 
http://cib.cf.ocha.ac.jp/bitool/MIX/) uses a dataset of 106 
protein sequences from PDB to train the network [1]. These 

tools have reported higher overall accuracy however, the 
challenge remains in validating these predictions automatically 
and competently. In this study, ANN coupled with the 
homologous sequences were used to predict the secondary 
structures of proteins and automatically validate the 
predictions upon comparison to homologous PDBs. NNvPDB 
predicts three states Helix, Sheet and Coil; and reports percent 
accuracy by comparing it with similar PDB structures. This 
server would help scientists to extract validated results 
efficiently than the existing servers. 
 
Neural Network Algorithm 
The network contains 1 input layer, 1 hidden layer with 4 units 
and 1 output layer with 2 units. The input layer has 17 groups 
and each group has 21 units (17*21=357), making 357 units 
which are binary. A local coding scheme is used to prepare 
these binary inputs [1]. The network uses bipolar sigmoid 
activation function [6, 7] to the net input as an activation 
function. Once the network is initiated, the state of each unit is 
defined by the formulae [1]. 
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Figure 1: A) Query page of NNvPDB; B) Result Page of NNvPDB showing the secondary structure states and Validation report of 
the predicted results; C) Comparative view of Predicted states with similar PDB Structures; D) a) Secondary structure of lowest 
reported Q3 by NNvPDB(1IMX:A) b) IMX:A Validation file. 
 
The main objective of the network is to map the given protein 
sequence with its corresponding secondary structure. Once 
mapped, the error rate is calculated using delta rule [8], and the 
weights of the network are adjusted using back propagation 
learning algorithm by gradient descent method to minimize the 
error. Each training data is iterated with back propagation 
learning until the error is minimized [1]. Once the network is 
trained, the query/test set is used without back propagation 
algorithm. 
 
Dataset Preparation 
Training Set Preparation 
The available tools on machine learning technique use a set of 
sequences for training the network. But here, we attempted a 
different approach of training the network with 5 sequences 

that are homologous to the query sequence, and the effort of 
combining neural network concept with homologous training 
set provides significant result in predicting the secondary 
structure of protein sequence. To implement this concept, we 
have written a Perl function to subject the query sequence to 
Blastp against the PDB database and five topmost hits are 
considered for further study. A sub sequence database is 
created using the selected hits. Each sequence in this database 
was converted to local coding scheme [1] and the 
experimentally determined secondary structures of these 
proteins were obtained from PDB secondary structure local 
database, and their secondary structure assignments were 
converted to binary codes as follows: Helix(1,0), Sheet(0,1) and 
coil (0,0). 
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Figure 2: NNvPDB Methodology: The input sequence is 
subjected to Blastp against PDB database and a sub database is 
created with top 5 blast hits and its secondary structure. Each 
entry in the database is prepared and is used to train the 
network. Once the network is trained, the input sequence is 
prepared and tested against the trained network. The network 
outputs are converted to secondary structure states based on a 
set of threshold value. Structure assigned to each threshold 
value is validated against PDB and the structure with highest 
Q3 is reported to user with validation information 
 
Network Training: 
For each user input sequence, the network is trained using 
supervised learning algorithm [1] for 100 iterations using the 
training set prepared using above said method. Initially the 
network was assigned with a random weight ranging between -
0.5 to 0.5 and the learning rate of the network will get adjusted 
according to the percentage identity and query coverage of 
blast hits using perl function. Once the network is trained, it is 
used to predict the secondary structure of user queried 
sequence. 
 
Test Set Preparation: 
The protein sequence submitted by user act as test set and it is 
prepared [1] and tested against the trained network and the 
output is a floating point value, which are converted to binaries 
using threshold value. Here, we used a set of 74 sequences 
listed in Appendix 1. to validate the network. 

Dependency of Q3 on threshold value 
The output of the neural network will be a floating point values 
(the network has 2 output units) which will be converted to 
binaries (0 or 1) based on some threshold value (t). If the 
network output is greater than t, it is set to 1 else it is set to 0 
and from the binary values, secondary structures are assigned 
([1,0]=helix, [0,1] = sheet, [0,0]=Coils). As the threshold value 
has higher influence over the assignment of secondary 
structure to the query sequence and in order to get best 
secondary structure, we used a set of threshold values ranging 
from -0.0001 to 0.9 for converting the floating point output from 
the network to binaries. For each threshold value, secondary 
structures are assigned and compared with the secondary 
structure of topmost blast hit and it’s Q3 [9] accuracy is 
calculated. Threshold value affording secondary structures 
with highest Q3 is selected as final structure. 
 
Automatic Validation 
A local DSSP secondary structure database was created for all 
the proteins available in PDB. A Perl - MySQL function was 
written to select the secondary structures of the top 5 blast hits 
from this database. The predicted secondary structure was 
validated against the secondary structure of the top 5 Blast hits 
and its Q3 accuracy was calculated [9] (Figure 1B) validation 
result). The overall working principle of this method is 
depicted in the flowchart (Figure 2). 
 
Testing NNvPDB with Non- Homologous protein 
The basic of NNvPDB methodology is training the network 
dynamically with similar protein sequences. In order to test the 
accuracy of NNvPDB for proteins with no homologous, we 
took a set of protein sequences listed in Appendix 2. Each 
protein in the list is treated as test sequences and for each 
sequences, we performed blastp against PDB and selected the 
hit which has less than 35 % sequence identity. The selected hit 
is used to train the network. Once the network is trained, the 
test sequences are applied against the network and the Q3 
accuracy was calculated. 
 
Results & Discussion: 
The query page of NNvPDB (Figure 1A) was designed in a user 
friendly manner which accepts single FASTA format protein 
sequence. The results page (Figure 1B) provides the predicted 
secondary structure of the query sequence, where the states of 
the secondary structures are represented as Helix(H), Sheets 
(B), Coil (C) and unassigned region(*). The validation table 
provides the percentage accuracy of the predicted result by 
comparing it with similar existing PDB structures. This table 
provides the following information: PDB ID, E-value, query 
coverage, percentage identity, subject start, subject end, query 
start, query end, length of the query sequence, number of 
residues predicted in all 3 states, number of residues correctly 
predicted in all 3 states and Q3 accuracy percentage. Since all 
the protein sequence available in sequence database does not 
have a 100% identical similar PDB structures, so query start and 
query end provides information about the segment of the 
sequence that are matching with PDB structures which are used 
for validation. Validation file (Figure 1C) is provided as part of 
result page, which contains the details of blast search, query 
sequence, predicted secondary structure and secondary 
structures obtained from PDB. (*) is used to represent match 
and (.) represents mismatch. 
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Figure 3: Secondary Structures predicted by Predator, SOPMA, PHD, SIMPA96 and NNvPDB for 2LHB:A and Secondary 
structures predicted by NNvPDB was compared with PDB. (*) match and (.) mismatch. 
 
Three State Predictions  
Accuracy of Helix prediction 
The idea behind the NNvPDB was to overcome the 
shortcomings and to develop an application better than the 
existing ones in the field of secondary structure prediction. 
NNvPDB was compared with existing secondary structure 
prediction tools Predator (based on local pairwise alignments 
and amino acid interactions) [10], SOPMA (multiple sequence 
alignment & nearest neighbor method) [11], PHD (Neural 
Networks) [12] and SIMPA96 (homology based) [13]. A total of 
74 sequences were used for validation (Appendix 1). NNvPDB 
had the highest Q3 for 28 sequences followed by Predator, 
PHD, and SIMPA96 & SOPMA with highest Q3 for 27, 11, 8 & 1 
sequence respectively. The relative accuracy at the residue level 
was also compared and the results are shown in Table 1(see 

supplementary material). Off the 3604 helical residues reported 
by the PDB, 2722 were correctly predicted by NNvPDB at 75.5% 
accuracy. In the case of other tools, the accuracy percentage was 
65.8%, 62.6%, 64.1% & 59.9% for Predator, SOPMA, PHD & 
SIMPA96 respectively. These results indicate the better 
performance of NNvPDB over other existing applications. 

Accuracy of Sheet and Coil prediction 
Similarly, the number of residues experimentally predicted to 
be sheets in PDB was 2949; 70.7% off these were correctly 
predicted by NNvPDB. The accuracy percentage reported by 
NNvPDB was higher than other tools and stood at 50.0%, 
54.6%, 61.0% & 49.5% for Predator, SOPMA, PHD & SIMPA96 
respectively. This result again shows the better performance of 
NNvPDB over other tools. However, the accuracy of coil 
prediction by NNvPDB was lowest among all the tools 
compared at 48.0% in comparison to 88.0% reported by 
Predator. One reason for this was the fact; NNvPDB uses 
threshold value as an important parameter to assign the 
secondary structure to the query sequence. This threshold value 
influences the binary codes representing the secondary 
structural states: Helix (1, 0), Sheet (0, 1) and coil (0, 0) as they 
are optimized based on the accuracy percentage of query 
sequence when compared with PDB. 
 
Q3 percentage accuracy 
Table 1 (see supplementary material) shows the overall 
percent accuracy; highest and lowest Q3 obtained for a single 
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individual sequence by the tools compared. The average 
percent accuracy of NNvPDB was 53.5% followed by 52.4% 
(Predator) and 48.8% (lowest) by SOPMA. From the pool of 74 
sequences, the highest Q3 observed for an individual sequence 
was 86.3% (1MBS:A) by Predator, SOPMA (80.0%), and 
NNvPDB (79.6%) (2LHB:A). Figure 3 shows the results of the 
NNvPDB for the PDB entry 2LHB:A which was compared with 
other tools and validated with the experimental PDB results. 
The asterisk (*) represent the match and dot (.) represents the 
mismatch in predictions between NNvPDB and PDB. 109 
accurate predictions were made by NNvPDB of 128 residual 
states. Impetus was also on to find the lowest Q3 for the 
individual sequence; and it was witnessed Predator (19.6%) to 
have the lowest Q3. In the case of NNvPDB, the minimum Q3 
recorded was 32.3%, well ahead than the SOMPA at 26.1%. 
Although, NNvPDB reported 32.3 % as lowest accuracy for 
1IMX:A as shown in Figure 1D(a), it figured out secondary 
structure states of 21 out of 36 residues correctly as depicted in 
Figure 1D(b). These results typify the promising performance 
of NNvPDB in secondary structure prediction when compared 
to existing tools. 
 
Comparison of NNvPDB with PHD 
PHD is one of the knowledge based method which generates 
profile using multiple sequence alignment and feed the 
generated profile as input to network. The network model of 
PHD has 3 levels [12]. Since Neural Network act as a base for 
the development of NNvPDB and PHD, the secondary 
structures predicted by both the applications were compared. 
Table 2 brings out the number of residues correctly predicted 
by NNvPDB and PHD. The 74 experimentally determined 
proteins taken for validation found to comprise 9311 secondary 
structural states (Helix, Sheet and Coil). It was observed that 
NNvPDB predicted 65.6% (6132 residues) of the states correctly 
in comparison to PHD 64.2% (5982 residues) which differs from 
NNvPDB by 1.6% which marks the betterment of NNvPDB in 
the field of secondary structure prediction.  
 
Sensitivity and Specificity 
Sensitivity and Specificity are the terms to measure the veracity 
of the tool; and these were calculated to compare the 
performance of NNvPDB and PHD using the formulae [14]. 
Sensitivity is the measure of proportion of actual positives 
which are correctly identified as positives and Specificity 
measures the proportion of negatives which are correctly 
identified as negatives. Appendix 3 lists out the sensitivity and 
specificity calculated for 68 sequences [14]. Table 2 (see 

supplementary material) summarizes the computed sensitivity 
and specificity between NNvPDB and PHD. The average 
sensitivity imparted by NNvPDB for helix was 53.6% and for 
sheet was 60.3% which was found to be higher than PHD which 
had an average sensitivity of 48.3% for helix and 51.5 % for 
sheet. But the average coil sensitivity by NNvPDB (42.7%) was 

lower than PHD (67.5%) as threshold optimization conquered 
the total coil prediction which results in increased specificity of 
Coil (77.5%) than by PHD (74.0%).The average specificity for 
helix by NNvPDB (61.6%) was lesser than PHD (83.2%) and 
specificity of sheet by NNvPDB was higher than PHD which 
was 86.7% and 82.3% respectively. When NNvPDB was 
compared with PHD with respect to sensitivity and specificity, 
NNvPDB tried to map secondary structure states to query 
sequence with higher accuracy. 
 
Conclusion: 

This study was intended to develop a secondary structure 
prediction server which not only predicts the residual states, 
but also validates the predictions with the structural homologs 
housed in the PDB database. NNvPDB promises to predict 
helix and sheet states with higher accuracy than Predator, 
SOPMA, PHD and SIMPA96 and also validates it 
simultaneously; a service offered exclusively by NNvPDB. The 
approach of training the network with robust dynamic 
homologous dataset ensures higher accuracy than the others. 
The overall Q3 reported by NNvPDB was 53.5%. This would 
ensure the quality of the predicted structure before advanced 
studies could be taken up.  NNvPDB would be a notable 
advancement in the field of secondary structure prediction with 
an attempt to validate the predicted result in an efficient and 
accurate manner than the existing servers. 
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Supplementary material: 
 
Table 1: Accuracy Percentage Reported by tools 

 PDB NNvPDB PREDATOR SOPMA PHD SIMPA96 

Residues reported in Helix State 3604 4984 3053 3611 3486 3200 
Residues accurately predicted in Helix state#  2722 2371 2256 2310 2158 
 % Helix accuracy  75.51* 65.8 62.6 64.1 59.9 

Residues reported in Sheet State 2949 2974 1886 2777 3256 2174 
Residues accurately predicted  in Sheet state#  2087 1475 1609 1798 1459 
 % Sheet accuracy  70.71* 50.0 54.6 61.0 49.8 

Residues reported in Coil State 2758 3549 7211 5705 5363 6719 
Residues accurately predicted in Coil state#  1323 2425 1985 1874 2247 
% Coil accuracy  48.0 88.0* 72.0 68.0 81.5 

Average Q3  53.51* 52.4 48.8 49.85 49.2 

% Highest Q3  79.6 
(2LHB:A) 

86.2* 
(1MBS:A) 

80 
(2ICB:A) 

79.1 
(1MBD:A) 

74.7 
(2ICB:A) 

% Lowest Q3  32.3* 
(1IMX:A) 

19.6 
(1CRN:A) 

26.1 
(1CRN:A) 

21.7 
(1CRN:A) 

24.0 
(1CRN:A) 

Percentage accuracy of helix, sheet and coil with average Q3, highest and lowest Q3 obtained for single sequence. n* Highest value 
(n = rank)  and * Highest value. Respective PDB Id of highest and lowest Q3 was given in brackets. # True Positives with respect to 
PDB. 
 
Table 2:  Sensitivity and Specificity of NNvPDB and PHD 

Parameters Secondary Structures NNvPDB PHD 

Average Sensitivity  
(64 Sequences) 

Helix 53.6% * 48.3% 
Sheet 60.3%* 51.5% 
Coil 42.7% 67.4%* 

Average Specificity  
(64 Sequences) 

Helix 61.6% 83.2%* 
Sheet 86.7%* 82.7% 
Coil 77.5%* 74.0% 

H+S+C Correctly Predicted 
(74 Sequences) 

 6132 
(65.9%) 

5982 
(64.2%) 

The calculations are based on 12232 total residues and 9311 (H+S+C) predictions in PDB for 74 protein sequences. * Highest Value. 


