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Abstract: 
The analysis of disease phenotype data with genetic information indicated that genes associated with clinically similar diseases 
tend to be functionally related and work together to perform a specific biological function. Therefore, it is of interest to relate 
disease phenotype data to mirror modular property implied in the association map of disease genes. Hence, we constructed a text-
based human disease gene network (HDGN) by using the phenotypic similarity of their associated disease phenotype records in 
the OMIM database. Analysis shows that the network is highly modular and it is highly correlated with the physiological 
classification of genetic diseases. Using a graph clustering algorithm, we found 139 gene modules in the network of 1,865 genes and 
their gene products (proteins) in these gene modules tend to interact with each other via the computation of PPI intensity. Genes in 
such gene modules are functionally related and may represent the shared genetic basis of their corresponding diseases. These 
genes, alone or in combination, could be considered as potential therapeutic targets in future clinical therapy.  
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Background:  

When used together with genetic information, phenotype data 
can help to explore relationships between genetic diseases and 
mutation-bearing genes [1]. However, phenotype data such as 
Online Mendelian Inheretance in Man (OMIM) [2] and 
PhenomicDB [3] remain intractable to be deal with because the 
lack of a standardized vocabulary for the phenotype 
description. Despite these difficulties, there exists some 
successful groundwork in utilizing such daunting phenotype 
data. For example, Freudenberg et al. [4] clustered nearly 1,000 
disease phenotypes of known genetic origin from OMIM 
according to their phenotypic similarity using periodicity, 
etiology, tissue, age of onset and mode of inheritance as 
classification indices. Their results showed that genes causing 
similar disease phenotypes have similar Gene Ontology (GO) 
functional annotation. Groth et al. [5] used text clustering to 
group genes based on their phenotype data from PhenomicDB. 
The results indicated that these clusters correlate with several 
indicators for biological coherence in gene groups, such as GO 

functional annotation and protein-protein interaction (PPI). 
Both the investigations revealed a fact that genes associated 
with similar disease phenotypes are more likely to be 
functionally related. These related genes work together, as a 
functional module, such as protein complex and cell pathway, 
to perform a specific biological function [6]. The functional 
relationship in these related genes are in agreement with the 
modular property of most biological networks, indicating the 
existence of densely-connected subgraphs in the gene 
functional network. 
 
In this study, we constructed a functional network of human 
disease genes, and further investigated its modular property. 
We determined the association between disease genes in the 
network by using their phenotypic relatedness. The human 
disease gene network (HDGN) has been proved to have a high 
modular architecture. From the network, we extracted 139 gene 
modules and found the modularity correlates with the 
functional level of PPI. Of these 139 gene modules, 127 (91.4%) 
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were significantly enriched in only one disease class or two. 
Therefore, our network-based framework revealed that disease 
genes and the associated genetic diseases have a high level of 

agreement in functional interplay, although they are at two 
different biological levels. 
 

 

 
Figure 1: The giant connected component of HDGN in the HDGN, the color of a disease gene node depends on the disease class to 
which the associated disease phenotype belongs. There are 22 disease classes for which their names, assigned colors are shown on 
the right of the Figure. It is noted that we referred to the disease classification described by Gol et al. (13) who manually classified 
disease phenotypes according to the physiological system affected. 
 
Methodology: 
Disease phenotype similarity measure 
In OMIM, we considered the combination of text (TX) and 
clinical synopsis (CS) fields as a full phenotype record. 
Phenotype records were parsed by the MetaMap Transfer tool 
[7], a configurable program to map text to the Unified Medical 
Language System (UMLS) Metathesaurus concepts [8]. Thus, 
phenotype records could be referred to as phenotype feature 
vectors. In this work, we used the term frequency–inverse 
document frequency weighting scheme [9] for the refinement of 
phenotype feature vectors and the cosine similarity measure for 
calculating the phenotypic similarity between different 
phenotype records. 
 
Construction of HDGN 
Inspired by the fact that genes associated with similar disease 
phenotypes are likely to be functionally related, we used the 
phenotypic relatedness to decide the functional relatedness of 
disease genes. The association between two disease genes in 

HDGN was decided when the phenotypic similarity score of 
their associated disease phenotypes exceeded the significant 
cutoff. The cutoff was chosen based on the random shuffling of 
the phenotype feature vectors of the two disease phenotypes 
and similarity score ranking.  
 
Modular measure 
We used two modular measures, dyadicity D and 
heterophilicity H, whch were proposed by Park et al. [10], to 
quantify the modular property of HDGN. Dyadicity is a 
measure of the enrichment of links between nodes sharing a 
common property over the number expected if the 
characteristics were distributed randomly on the network. 
Heterophilicity is a measure of the tendency of nodes to 
connect with other nodes with a common property. In HDGN, 
disease genes with their associated disease phenotypes 
belonging to the same disease class were regarded to have the 
common property. Thus, we can compute the Ds and Hs for 
different disease classes.  
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Figure 2: Distribution of the percentage of the majority of disease phenotypes in 139 disease phenotype groups. The diagram shows 
the distribution of the percentage of the majority of disease phenotypes in 139 different disease phenotype groups. Our result 
indicated that the corresponding disease phenotypes in the same gene module tend to belong to the same disease class. 
 
Gene modules exaction and evaluation 
We used the graph clustering algorithm [11] to extract gene 
modules from HDGN. Here, a module denotes a set of 
biological individuals (e.g., gene, protein) in a certain biological 
network, such as gene regulatory network and PPI network. To 
evaluate the functional relations of genes in gene modules, we 
introduced the PPI intensity Ippi. Ippi was defined as the fraction 
of actual existing PPIs among the possible maximum number of 
PPIs in a gene module i, and therefore it can be formulated as: 

ppi actual ( ( 1) 2)I N k k   

Where Nactual is the actual existing PPI number between gene 
products in gene module, k is the number of gene products in 
this gene module which can be found having interactions with 
others in the Human Protein Reference Database [12].  
 
Disease class enrichment analysis 
Disease class enrichment analysis was implemented to explore 
the enrichment of gene module in a disease class. The 
framework was executed like this: i) for a gene module, we 
randomly picked from all the disease genes and built 10,000 
pseudo gene modules that have the same number of disease 
genes as the real gene module , ii) in the real gene module, the 
possible disease classes of the associated disease phenotypes 
are determined and the number of disease phenotypes 
belonging to each certain disease class is counted and iii) the P-
values for every possible disease class determined in the real 
gene module are computed based on the random controls. 
 

Results: 
HDGN has a highly modular property 
We collected all the known 1,865 disease genes from OMIM 
and constructed HDGN which contains 21,514 links among 
1,685 disease genes, with a giant connected component of 1,607 
(99.36%) disease genes and 21,428 (98.9%) links (Figure 1). In 
the network, disease gene nodes were marked with different 
colors based on the assigned disease classes of their associated 
disease phenotypes. Here, we referred to the disease 
classification, described by Gol et al. [13], who manually 
classified disease phenotypes into 22 main disease classes 
according to the physiological system affected. It is visually 
indicative that disease genes with their associated disease 
phenotypes belonging to the same disease class tend to group 
together forming different modular structures in the network. 
Table 1 (see supplementary material) listed the two modular 
measures: dyadicity D and heterophilicity H for the 22 disease 
classes. The fact that HDGN has a highly modular structure can 
be proved by the finding that all the disease classes are dyadic 
(D>1) and most (77.27%) are heterophobic (H<1), together 
indicating a high correlation between the modularity and the 
physiological classification of disease phenotypes.  
 
Gene products in a gene module tend to interact with each 
other 
Of the total 139 gene modules extracted from HDGN, 14 gene 
modules have the Ippi=0 because none of their members has 
interactions with others in the HPRD. Of the remainder, 9 gene 
modules have the Ippi=1 and the others have the Ippi of 0-1. 
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Finally, we got the mean Ippi is 0.34. To test the statistical 
significance of the obtained mean Ippi, 139 gene sets of the same 
size as the corresponding gene modules were chosen from all 
the disease genes as a random control. We built 10,000 such 
random controls and the result showed that the mean Ippi is 
significantly higher than that of random groups (P-value=2.5e-
3), indicating that gene products in a gene module have a 
tendency to interact with each other and be part of the same 
biological process; that is, these gene products may serve 
together, as a fundamental functional unit of biological system, 
to participate in the same cellular pathway or molecular 
complex. 
 
Gene modules tend to enrich in certain disease classes 
We referred to the disease class annotations described by Gol et 
al. [13] to conduct disease class enrichment analysis. The result 
showed that 113 (81.3%) gene modules were significantly 
enriched in only one of the 22 disease classes, 14 (10.1%) gene 
modules in two disease classes and 12 (8.6%) gene modules in 
three or more disease classes. Our statistical results also 
indicated that the associated disease phenotypes of a given 
gene module tend to belong to the same disease class (Figure 

2). Taking together, the vast majority (91.4%) of gene modules 
have significant specificity to certain disease classes, indicating 
that these gene modules represent shared genetic origin of the 
associated diseases, and that genes in a given gene module may 
be used as a proxy of related diseases in future clinical therapy. 
 
Discussion: 
The network modeling method presented here revealed an 
obvious modular property in HDGN. In the network, the edge 
between two disease genes represents a measure of their 
phenotypic relatedness; thus the modularity supports the 
existing modular organization in genetic diseases [14], which is 
manifested as similar diseases are often caused by functionally 
related genes. Our findings also showed that disease genes and 
their associated genetic diseases have a high level of agreement 
in functional interplay. We believe such functional agreement 
will prompt the integrative analysis of different levels of 
biological data. For example, the phenotypic relatedness 
measure of two genes in HDGN can be considered, combined 
with gene expression, PPI and GO annotation, to predict 
candidate genes in an integrated network way. 
 
The measure of gene interactions in HDGN is less quantitative 
due to the daunting nature of disease phenotype data. In this 
situation, a weighted HDGN should be considered so that the 
network is more informative and fit for graph-based clustering 
algorithm. With increasing amounts of disease phenotype data 
available, we can construct a more complete map of human 
disease genes, which make it feasible to investigate the 
associations among genome, interactome, phenome and other 
level of omics. We believe these attempts can inform our 
understanding of the relationship between human diseases and 

the underlying genetic mechanisms, and further help to 
uncover pathophysiologic foundations of most genetic diseases.  
 
Conclusion: 
We constructed a gene network of 1,865 genes for known 
diseases called HDGN based on a text-based association 
determination scheme according to the phenotypic similarity. 
Disease phenotype data provides a valuable window for 
dissecting genotype–phenotype associations. Thus, text-based 
similarity should be a potentially suitable measure for deciding 
disease gene interactions in HDGN. In addition, HDGN 
provides a disease-gene-centered sight of disease association 
map. Hence, it is possible to explore the molecular mechanisms 
underlying genetic diseases. Genes in 139 gene modules 
extracted from the network have been demonstrated to 
functionally interact and the associated disease phenotypes are 
clinically similar. This observation suggested that related genes 
cooperate to perform desired cellular functions contributing to 
certain disease phenotypes. This finds application in target 
selection and validate during drug discovery. 
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Supplementary material: 
 
Table 1:  Dyadicity H and heterophilicity D values for the 22 disease categories 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

*The number of disease genes with their corresponding genetic diseases belonging to the left disease category. 
 

Disease class Disease genes*  In-class links Out-class links D value H value 

Bone 51 112 893 7.4967 0.6145 
Cancer 98 769 398 11.145 0.1984 
Cardiovascular 101 196 538 5.4931 0.3761 
Connective tissue 41 99 1142 12.715 1.4108 
Dermatological 102 892 1943 12.174 1.1662 
Developmental 48 65 1143 4.1432 1.4103 
Ear, nose, throat 54 597 819 49.410 0.6134 
Endocrine 79 412 398 7.1568 0.3165 
Gastrointestinal 31 121 143 12.140 0.2712 
Hematological 69 131 395 5.1562 0.3212 
Immunological 59 263 793 10.145 0.4637 
Metabolic 203 413 1978 2.3655 0.3431 
Multiple 148 1135 2435 6.1359 0.3746 
Muscular 62 151 847 4.1283 0.2806 
Neurological 249 1897 3986 3.1625 0.5892 
Nutritional 27 179 89 38.328 0.2516 
Ophthalmological 103 629 798 4.6383 0.4596 
Psychiatric 39 237 765 14.568 0.3563 
Renal 50 79 254 4.9536 0.5856 
Respiratory 35 159 215 29.956 0.3562 
Skeletal 56 356 1568 25.562 1.5536 
Unclassified 22 14 837 3.9918 1.5077 


