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Abstract 
The combination of physicochemical properties and energetic parameters derived from protein-ligand complexes play a vital role in 
determining the biological activity of a molecule. In the present work, protein-ligand interaction energy along with logP values was 
used to predict the experimental log (IC50) values of 25 different kinase-inhibitors using multiple regressions which gave a correlation 
coefficient of 0.93. The regression equation obtained was tested on 93 kinase-inhibitor complexes and an average deviation of 0.92 from 
the experimental log IC50 values was shown. The same set of descriptors was used to predict binding affinities for a test set of five 
individual kinase families, with correlation values > 0.9. We show that the protein-ligand interaction energies and partition coefficient 
values form the major deterministic factors for binding affinity of the ligand for its receptor. 
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Background: 
Protein kinases are a large family of homologous proteins with 
more than 500 members in the human proteome [1]. Kinase-
mediated protein phosphorylation is a crucial component of the 
signal transduction pathways which plays a central role in 
diverse biological processes such as cell growth, metabolism, 
differentiation, and apoptosis [2]. A number of diseases, 
including cancer, diabetes, inflammation, immune and 
neurodegenerative disorders are linked to perturbation of protein 
kinase–mediated cell signaling pathways [3]. Since all members 
of the kinase families utilize ATP, kinase inhibitors are designed 
to bind with the ATP to prevent substrate phosphorylation [1].  
 
Over 20 small-molecule protein kinase inhibitors have been 
currently approved and more than 150 kinase inhibitors are 
undergoing clinical trials [4]. Yet, issues such as target   
specificity, [5-8] resistance development [9-10] hinge region 

binding and activation state dependence of kinase inhibitors need 
to be addressed [2-4].  
 
The three-dimensional structures of proteins with bound ligand 
are available in the Protein Data Bank [11] along with their 
experimental binding affinity information. Binding affinity data 
such as Ki, Kd, IC50 etc. obtained from experimental studies are 
also available in databases such as BindingDB [12], Binding 
MOAD [13], PDBbind [14] etc. Availability of valuable resources 
regarding kinase inhibitors made computational biologists to 
develop statistical models to accurately predict the binding 
affinity of complexes.  
 
Structure-based virtual screening methods use docking programs 
to explore the possible binding modes of a ligand within the 
target binding site, and scoring functions to estimate the affinity 
of the ligand for the binding site [15, 16]. While docking methods 
at present are in general successful in predicting the correct 
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binding conformations of ligand molecules, they do not perform 
well in correctly predicting the binding affinity for the predicted 
ligand conformations [2]. Hence, it is essential to predict the 

binding affinity of a given ligand to its target known as the 
‘scoring problem’ [17].  
 
 

Table 1: Experimentally observed and predicted IC50 values for 25 kinase-inhibitor complexes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: The deviation between the predicted and experimental IC50 values is given in parenthesis.  
 
As a pioneering work, Bohm [18] (1994) developed a simple 
empirical function (LUDI) to estimate the binding constant for a 
protein-ligand complex of known structure. This empirical 
scoring function takes into account hydrogen bonds, ionic 
interactions, the lipophilic protein-ligand contact surface and the 
number of rotatable bonds in the ligand. Head et al. (1996) in their 
VALIDATE approach used electrostatic and steric interaction 

energies, octanol-water partition coefficient, polar and nonpolar 
contact surfaces, and a term to describe intramolecular flexibility 
[19]. Following the approach of Bohm, [18] Eldridge et al. [20] 
(1997) included intramolecular flexibility in ChemScore and 
Wang et al. [21] (1998) classified hydrogen bonds and included 
the occurrence of interstitial water molecules in SCORE. Based on 
the statistical analysis of experimentally observed distributions 

PDB_ID Ligand_ID Experimental Experimental Predicted log(IC50 (nM)) 

  IC50 (nM) 
Log (IC50 

(nM)) 
Back-check 

Jack-knife 
test 

2I6A 5I5 22.8 1.36 1.33 ( 0.03) 1.30 ( 0.06) 

2OO8 RAJ 1 0.00 0.26 (-0.26) 0.48 (-0.48) 

4AT3 LTI 4 0.60 0.28 ( 0.32) 0.13 ( 0.47) 

3SXF BK5 5 0.70 0.69 ( 0.01) 0.69 ( 0.01) 

2C1A I5S 170 2.23 1.43 ( 0.80) 1.96 ( 0.27) 

3MB6 01I 100 2.00 1.71 ( 0.29) 1.54 ( 0.46) 

1Y6B AAX 38 1.58 0.85 ( 0.73) 1.90 (-0.32) 

2A4L RRC 400 2.60 2.82 (-0.22) 2.90 (-0.30) 

2YAK OSV 2 0.30 0.24 ( 0.07) 0.17 ( 0.13) 

4GK2 L66 40 1.60 1.55 ( 0.05) 1.53 ( 0.07) 

3POZ 03P 23 1.36 1.65 (-0.28) 1.91 (-0.55) 

4F64 0S8 63 1.80 2.00 (-0.20) 2.15 (-0.35) 

3BZ3 YAM 1.5 0.18 0.27 (-0.09) 0.33 (-0.15) 

1Q3D STU 15 1.18 1.28 (-0.11) 1.34 (-0.16) 

3C1X CKK 45 1.65 1.01 ( 0.64) 0.68 ( 0.97) 

3D94 D94 19 1.28 0.96 ( 0.32) 0.77 ( 0.51) 

4BKZ 1WS 27 1.43 1.87 (-0.43) 2.20 (-0.77) 

3HRB I39 21 1.32 1.80 (-0.48) 1.93 (-0.61) 

4BFV ZVV 140 2.15 1.45 ( 0.70) 0.54 ( 1.61) 

3LJ3 WYE 43 1.63 2.12 (-0.49) 2.74 (-1.10) 

2VGO AD5 500 2.70 1.93 ( 0.77) 1.39 ( 1.31) 

4HDC 13Y 1.2 0.08 0.37 (-0.29) 0.77 (-0.69) 

1RW8 580 1320 3.12 2.96 ( 0.16) 2.84 ( 0.28) 

3KRR DQX 0.48 -0.32 -0.26 (-0.06) -0.16 (-0.16) 

3MVH WFE 0.5 -0.30 0.05 (-0.35) 0.19 (-0.49) 

   Average 
deviation 0.41        0.63 
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and frequencies of distance-dependent protein-ligand atom pair 
interactions, the potential of mean force (PMF) was obtained 
which has been used for affinity predictions of large datasets [22]. 
Based on a larger set of 200 protein–ligand complexes, Wang et al. 
(2002) developed X-Score [17], consisting of four energy terms 
including van der Waals interactions, hydrogen bonds, 
hydrophobic effects and effective rotatable bonds. Docking 
programs such as FlexX [23] and Surflex [24] use empirical 
scoring functions by including different empirical energy terms. 
A large-scale validation of a quantum mechanics based scoring 
function to predict the binding affinity and binding mode of a 
diverse set of protein-ligand complexes containing different 
protein families including aspartic proteases, serine proteases, 
sugar binding proteins, amino acid binding proteins, and protein 
kinases was done by Raha and Merz (2004) [25]. LigScore 
functions [26] have made use of three distinct terms, the van der 
Waals interaction, the polar attraction between the ligand and 
protein, and the desolvation penalty attributed to the binding of 
the polar ligand atoms to the protein to predict the experimental 
pKi values of a diverse set of 118 protein–ligand complexes that 
span more than seven protein families. CLiBE, a database of 
computed ligand binding energy (based on molecular mechanics 
force field) for ligand-receptor three dimensional structures have 
been developed and a linear correlation between the computed 
ligand-receptor interaction energy and experimental binding 
affinity (Kcal/mol) has been observed [27]. A Program for 
Energetic Analysis of Receptor-Ligand System (PEARLS) has 
been developed to compute free energy of protein-ligand 
complexes [28]. 
 
While the above methods use the known three dimensional 
structures to predict binding affinities, the Quantitative 
Structure-Activity Relationship (QSAR) methods serve as an 
alternative way of binding affinity predictions in the absence of 
3D structure of target proteins or their complexes with ligands. 
These methods make use of physicochemical and structural 
properties (descriptors) of ligands to relate their biological 
activity using regression methods. Combined QSAR approaches 
in binding affinity predictions have been recently reported [29, 
30].  
 
In the present work, we have correlated the experimental IC50 
values (in their logarithmic form) of 25 different kinase-inhibitor 
complexes with their protein- interaction energy and partition 
coefficient (logP) values for multiple regression analysis, which 
shows a good correlation with the experimental IC50 values. This 
shows that the protein-ligand interaction energies and logP 
values form the major factors that determine the ligand binding 
affinity of proteins. By incorporating these energetic as well as 
solvent terms, docking methodologies can be highly successful in 
predicting the binding affinity for the generated poses of their 
correct ligand binding modes. 
 

 
Figure 1: (a) Scatter plot of experimental and back-check 
predicted IC50 values in 25 different kinase-inhibitor complexes, 
(b) Scatter plot of experimental and jack-knife predicted IC50 
values in 25 different kinase-inhibitor complexes. 
 
Methodology 
Information resources 
Twenty five different protein kinase-inhibitor complexes solved 
by x-ray crystallography method were obtained from Protein 
Data Bank [11]. The complexes in the dataset have resolution less 
than 2.5 Å with known IC50 values were treated as training set. 
The number of non-hydrogen atoms of the ligands and energetic 
profile comprising of i) total ligand-receptor interaction energy, 
ii) van der Waals energy, iii) electrostatic energy, iv) hydrogen 
bond energy, v) solvation free energy, vi) conformational entropy 
and vii) ligand-water-receptor binding energy were obtained 
from the PEARLS server  for each of the kinase-inhibitor 
complexes. The PEARLS server uses the AMBER force field [31] 
for computing the above energetic contributions [28]. LogP 
(octanol/water partition coefficient) values of the ligands were 
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calculated from the Molinspiration server [32] by providing 
SMILES code of the ligand as input.  
 
Training set construction and validation 
Multiple regression analysis was carried out to establish a 
relationship between the above-mentioned descriptors and 
experimental log (IC50). A back-check test was carried out for 
predicting the binding affinity by re-substituting the values in the 
regression equation obtained. For the jack-knife test, coefficients 
of multiple regressions were determined using (n-1) data 
(omitting one protein-ligand complex at a time) and then 
predicting binding affinity of the omitted protein-ligand complex.  
 
Test set information 
The regression equation obtained from the training set was tested 
on i) a set of 93 kinase-inhibitor complexes with IC50 values, and  
ii) a set of 9 approved kinase inhibitors [2].  
 
To further assess the predominant role of the chosen descriptors 
in binding affinity predictions, the experimental log (IC50) values 
were regressed with the same set of nine descriptors in five 
independent protein-kinase families comprising 17 cyclic AMP-
dependent kinase-inhibitors, 12 casein kinase-inhibitors, 15 
hepatocyte growth factor receptor kinase-inhibitors, 12 cyclin-
dependent kinase-inhibitors and 16 mitogen-activated kinase-
inhibitors. For each of the five kinase families, five different 
regression equations were obtained which were then validated by 
back-check analysis. The dataset information of all the kinase-
inhibitor complexes used in the present study, including PDB ID, 
protein name, ligand ID,   x-ray resolution (Å), experimental IC50 

values (nM) with their logarithmic form, and descriptor values 
are provided in the Appendix. 
 
Discussion 
The following multiple regression equation (1) between log (IC50) 
values and nine energetic descriptors and log P with a correlation 
coefficient, r = 0.93 was obtained for the training set of 25 kinase-
inhibitor complexes. 
 
log (IC50) = – 0.07 NHA + 44.71 IE – 44.61 vdW – 44.51 Elect – 
44.47 H-bonds – 45.45 Solv – 43.19 entropy – 42.82 H-bonds 
(water-mediated) + 0.18 LogP + 3.58      (1) 
 
where NHA denotes the number of non-hydrogen atoms of the 
ligand, IE, the total Ligand-receptor interaction energy 
(Kcal/mol), vdW, the van der Waals energy (Kcal/mol), Elect, 
the electrostatic Energy (Kcal/mol), H-bonds, the hydrogen bond 
energy (Kcal/mol), Solv, the solvation free energy (Kcal/mol), 
entropy, the conformational entropy (Kcal/mol), H-bonds 
(water-mediated), the ligand-water-receptor binding energy 
(Kcal/mol) and logP, (the octanol-water) Partition coefficient. 
 
The experimentally observed and predicted IC50 values for 25 
kinase-inhibitor complexes in back-check and jack-knife 
predictions are provided in Table 1. The average deviation of the 
predicted log (IC50) values from the experimental log (IC50) values 
was 0.41 for back-check and 0.63 for jack-knife predictions 
respectively. The relationship between the experimental log (IC50) 
values with back-check and jack-knife predictions are provided 
as scatter plots in Figure 1a and 1b. 

 
Table 2:  Prediction of experimental log (IC50) values in approved kinase inhibitors. 

S. 
NO. 

PDB ID Protein name 
Ligand 
ID 

Ligand name 
Experimental 

log (IC50 (nM)) 

Predicted 
log (IC50 

(nM)) 

1 1M17 Epidermal growth factor receptor AQ4 Erlotinib - 0.70 – 3.16 (1.23) 0.87 

2 1IEP Proto-oncogene tyrosine-protein kinase abl STI Imatinib 0.04 – 3.93 (1.99) 1.79 

3 2ITY Epidermal growth factor receptor IRE Gefitinib 0.00 – 3.44 (1.72) 1.46 

4 2J2I Proto-oncogene serine/threonine-protein kinase 
pim-1 LY4 Ruboxistaurin 2.30 1.61 

5 2GQG Proto-oncogene tyrosine-protein kinase abl1 1N1 Dasatinib - 0.70 – 2.85 (1.07) -0.97 

6 2JAV Serine/threonine-protein kinase nek2 5Z5 Sunitinib 3.90 1.02 

7 1UWH B-raf proto-oncogene serine/threonine-protein 
kinase BAX Sorafenib 1.04 – 3.86 (2.45) 1.12 

8 1XKK Epidermal growth factor receptor FMM Lapatinib 0.46 – 2.64 (1.55) 1.88 

9 2F2U Rho-associated protein kinase 2 M77 Fasudil 2.26 – 4.07 (3.16) 2.45 

Note: The mean value between the logarithm of minimum and maximum experimental IC50 values are given in parenthesis.  
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Table 3: Experimentally observed and predicted IC50 values for 17 cyclic AMP-dependent protein kinase-inhibitor complexes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: The deviation between the predicted and experimental IC50 values is given in parenthesis.  
 
Table 4: Experimentally observed and predicted IC50 values for 12 casein kinase-inhibitor complexes. 

PDB_ID LIG_ID Experimental Experimental Back-check  

  IC50 (nM) log(IC50 (nM)) Prediction 

2QC6 G12 100 0.27 0.24 (0.03) 

2ZJW REF 40 0.38 0.37 (0.01) 

3AMY AGI 800 0.36 0.38 (-0.02) 

3BQC EMO 2000 0.18 0.20 (-0.03) 

3MB6 01I 100 0.24 0.25 (0.00) 

3PE1 3NG 1 0.20 0.21 (-0.01) 

3PWD CZ0 220 0.34 0.31 (0.03) 

3R0T FU9 0.91 0.24 0.24 (0.01) 

3RPS 4B0 320 0.36 0.37 (-0.01) 

3U4U LNH 3100 0.34 0.34 (0.01) 

4ANM WUL 28 0.23 0.22 (0.01) 

4DGM AGI 1200 0.22 0.23 (-0.02) 

   Average deviation 0.02 

Note: The deviation between the predicted and experimental IC50 values is given in parenthesis.  

PDB_ID LIG_ID Experimental Experimental Back-check 

  IC50 (nM) log ( IC50 (nM)) Prediction 

1STC STU 51 1.71 1.45 (0.26) 

1SVE I01 5 0.70 0.99 (-0.29) 

1XH4 R69 30 1.48 1.58 (-0.10) 

1YDS IQS 5300 3.72 3.13 (0.59) 

2C1A I5S 170 2.23 2.23 (0.00) 

2F7X 4EA 38 1.58 1.64 (-0.06) 

2GNI M77 7605 3.88 3.59 (0.29) 

2JDS L20 27 1.43 1.45 (-0.01) 

2OH0 2PY 18 1.26 1.21 (0.04) 

2OJF 4PY 110 2.04 2.15 (-0.11) 

2UW6 GVO 280 2.45 3.07 (-0.62) 

2UZT SS3 14 1.15 1.11 (0.04) 

3L9L L9L 167 2.22 1.78 (0.45) 

3MVJ XFE 3200 3.51 3.77 (-0.27) 

3OW3 SMY 742 2.87 2.88 (-0.01) 

3ZO2 15I 80 1.90 2.10 (-0.19) 

4C35 NU3 560 2.75 2.76 (-0.01) 

   Average deviation 0.28 
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a) Test set of diverse protein kinases (Test set I) 
The regression equation (1) obtained was tested on 93 kinase-
inhibitor complexes (results are provided as Table 7 in the 
Supporting Information file) and the relationship between the 
experimental and predicted log (IC50) values is presented as a 
scatter plot (Figure 2). An average deviation of 0.92 from the 
original log (IC50) values was observed for the 93 kinase-inhibitor 
complexes. The difference between the experimental and 
calculated log (IC50) values was found to be less than ±1 log unit 
for 64 out of 93 kinase-inhibitor complexes. 
 
b) Approved kinase inhibitors as test set (Test set II) 
To further test the predictability of our regression equation (1), 
we have tested it for nine approved kinase inhibitors2. The 
experimental values of those inhibitors were found to have 
minimum and maximum range of values. Hence, the mean value 
between the logarithm of minimum and maximum values were 
calculated and compared with the predicted values. The 
predicted values were almost closer (the deviation was less than 
1) to the experimental log (IC50) values in 7 out of 9 kinase-
inhibitor complexes (Table 2). 
 

 
Figure 2: Scatter plot of experimental and predicted IC50 values in 
the test set of 93 kinase-inhibitor complexes. 
 
c) Kinase classes 
In order to further validate the use of the same set of descriptors 
in predicting binding affinity, the experimental IC50 values of five 
kinase families were regressed. The regression equation obtained 
for individual kinase families and the result of back-check 
predictions are discussed as follows: 
 
i) Cyclic AMP-dependent protein kinase-inhibitor complexes 
For a data-set of 17 cyclic AMP-dependent protein kinase-
inhibitor complexes, a correlation value of 0.95 was obtained 
using the regression equation (2) 
 

log (IC50) = -0.06 NHA – 76.09 IE + 76.08 vdW  + 75.98 Elect + 
76.26 H-bonds + 76.62 Solv +  75.21 entropy + 77.07 H-bonds 
(water-mediated) – 0.13 LogP + 5.21          (2) 
 
Using the regression equation (Eq. 2), log (IC50) values for 17 
cyclic AMP-dependent protein kinase-inhibitor complexes were 
predicted. The experimental as well as predicted log (IC50) values 
are presented (Table 3) and plotted (Figure 3a). The average 
deviation for the back-check test was 0.28 from the experimental 
values. 
 
ii) Casein kinase-inhibitor complexes 
12 casein kinase-inhibitor complexes were taken for the multiple 
regression analysis which has shown a good correlation of r = 
0.97 for the regression equation (3) 
 
log (IC50) = 0.01 NHA – 1.40  IE + 1.45 vdW + 1.39 Elect + 1.36 H-
bonds + 1.43 Solv + 1.35 entropy + 1.69 H-bonds (water-
mediated) + 0.01 LogP + 0.47                      (3) 
 
The set of 12 casein kinase-inhibitor complexes with their 
experimental and predicted values has been provided (Table 4). 
The scatter plot shows the relationship between the experimental 
and predicted IC50 values (Figure 3b), the average deviation 
being 0.02 for back-check predictions. 
 
iii) Hepatocyte growth factor receptor kinase-inhibitor 
complexes 
A set of 15 hepatocyte growth factor receptor kinase-inhibitors 
has shown a correlation coefficient value of 0.90 when subjected 
to regression with multiple descriptors, the equation (4) being  
 
log (IC50) =  0.05 NHA – 232.16 IE  + 231.87 vdW  + 231.02 Elect + 
232.03 H-bonds + 232.68 Solv + 224.75 entropy +236.13 H-bonds 
(water-mediated) – 0.27 LogP + 0.24   (4) 
 
The experimental and predicted log (IC50) values are provided in 
Table 5. The correlation between experimental and calculated 
values for the 15 hepatocyte growth factor receptor kinase-
inhibitors is shown in Figure 3c. An average deviation of 0.31 
was observed. 
 
iv) Cyclin-dependent kinase-inhibitor complexes 
A very good correlation of r = 0.94 was obtained for 12 cyclin-
dependent kinase-inhibitor dataset using the regression equation 
(5) 
 
log (IC50) = – 0.35 NHA + 94.15 IE – 94.18 vdW  – 96.24 Elect – 
92.97 H-bonds – 92.06 Solv –96.77 entropy – 95.47 H-bonds 
(water-mediated) + 1.94 LogP + 6.27          (5)          
 
The predicted results of 12 cyclin-dependent kinase-inhibitor 
complexes are tabulated (Table 6). The average deviation value 
from the experimental value was found to be 0.49. The results are 
plotted (Figure 3d). 
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Table 5: Experimentally observed and predicted IC50 values for 15 hepatocyte growth factor receptor kinase-inhibitor complexes. 

PDB_ID LIG_ID Experimental Experimental Back-check 

  IC50 (nM) log(IC50 (nM)) Prediction 

2WD1 ZZY 82 1.91 1.56 (0.36) 

2WKM PFY 9 0.95 1.26 (-0.30) 

3C1X CKK 45 1.65 1.56 (0.09) 

3CCN LKG 120 2.08 1.69 (0.39) 

3CD8 L5G 9 0.95 1.11 (-0.16) 

3CTH 319 35 1.54 1.84 (-0.29) 

3I5N B2D 17 1.23 1.69 (-0.46) 

3F66 IHX 900 2.95 2.88 (0.07) 

3L8V L8V 8 0.90 0.72 (0.18) 

3QTI 3QT 14 1.15 1.18 (-0.04) 

3RHK M97 520 2.72 2.60 (0.11) 

4DEG 0JJ 6 0.78 1.43 (-0.65) 

4DEH 0JK 612 2.79 2.71 (0.08) 

4EEV L1X 42 1.62 1.09 (0.53) 

4GG7 0J8 6.5 0.81 0.72 (0.09) 

   Average deviation 0.31 

 
Table 6: Experimentally observed and predicted IC50 values for 12 cyclin-dependent kinase-inhibitor complexes. 
 PDB_ID LIG_ID PDB_ID Experimental Experimental Back-check  

   IC50 (nM) log(IC50 (nM)) Prediction 

1AQ1 STU 1AQ1 7 0.85 0.71 (0.13) 

1DI8 DTQ 1DI8 1000 3.00 3.07 (-0.07) 

1E1X NW1 1E1X 2200 3.34 3.89 (-0.54) 

1H01 FAL 1H01 22000 4.34 4.74 (-0.40) 

1W0X OLO 1W0X 7 0.85 1.59 (-0.74) 

3S2P PMU 3S2P 68 1.83 1.36 (0.48) 

3TIY TIY 3TIY 17000 4.23 4.36 (-0.13) 

3TNW F18 3TNW 20000 4.30 3.52 (0.78) 

3ULI 1N3 3ULI 70 1.85 1.48 (0.37) 

3UNJ 0BX 3UNJ 11000 4.04 3.41 (0.63) 

3WBL PDY 3WBL 23000 4.36 4.22 (0.14) 

4BGH 3I6 4BGH 4 0.60 1.24 (-0.63) 

    Average deviation 0.49 

Note: The deviation between the predicted and experimental IC50 values is given in parenthesis.  
 
 
 
 
 



	  Open access 

	  

ISSN 0973-2063 (online) 0973-8894 (print) 

Bioinformation 12(3): 172-181 (2016) 

	  

©2016 	  

	  

179 

Table 7: Experimentally observed and predicted IC50 values for 16 mitogen-activated protein kinase-inhibitor complexes 

PDB_ID LIG_ID Experimental Experimental Back-check  

  IC50 (nM) log (IC50 (nM)) Prediction 

1W82 L10 196 2.29 2.40 (-0.11) 

1WBN L09 350 2.54 2.20 ( 0.34) 

1ZYJ BI5 1500 3.18 2.84 ( 0.33) 

3FLZ FLZ 106 2.03 2.25 (-0.22) 

3FMH 533 11 1.04 1.25 (-0.21) 

3HL7 I47 110 2.04 1.56 ( 0.48) 

3HP2 P36 680 2.83 3.07 (-0.24) 

3HRB I39 21 1.32 1.99 (-0.67) 

3IPH G11 316.23 2.50 2.40 ( 0.10) 

3L8X N4D 10 1.00 0.96 ( 0.04) 

3MVM 39P 3.9 0.59 0.63 (-0.03) 

3NWW 3NW 7 0.85 0.96 (-0.12) 

3S4Q NK0 4 0.60 0.44 ( 0.16) 

3UVP 048 35 1.54 1.26 ( 0.28) 

3ZSG T75 7.1 0.85 1.15 (-0.30) 

4EWQ GG5 600 2.78 2.62 ( 0.16) 

   
Average 
deviation 0.29 

Note: The deviation between the predicted and experimental IC50 values is given in parenthesis.  
 
v) Mitogen-activated protein kinase-inhibitor complexes 
The multiple regression analysis of 16 mitogen-activated protein 
kinase-inhibitors gave a correlation of r = 0.94 using the 
regression equation (6) 
 
log (IC50) = – 0.13 NHA + 16.62 IE – 16.05 vdW  – 17.09 Elect – 
16.66 H-bonds – 16.62 Solv – 13.78 entropy – 18.19 H-bonds 
(water-mediated) + 0.40 LogP + 8.27        (6) 
 
The observed and computed values for a dataset of 16 mitogen-
activated protein kinase-inhibitors are presented (Table 7) 
showing an average deviation value of 0.29. The predicted IC50 
values were plotted against the experimental values (Figure 3e).  
 
In QSAR studies, usually a large number of physicochemical and 
structural properties (descriptors) of chemical compounds are 
calculated and the best combinations of descriptors that correlate 
maximally with the biological activity are chosen. QSAR models 
have been developed for predicting kinase selectivity profiles to 
provide understanding of structure selectivity relationships for 
kinase inhibitor design [33-35]. The development of widely 
accepted ‘universal’ set of descriptors applicable for diverse 
datasets has also been a focus of QSAR-based analysis [36-38].  In 
the present work, a uniform set of descriptors have been used 

across different kinase-inhibitor complexes for binding affinity 
prediction.  
 
Han et al. (2006) suggested that the calculated interaction energies 
highly depend on van der Waals contacts, electrostatic 
interactions, hydrogen bonds, metal-receptor binding, and 
solvation [28], which agrees with the observations of our present 
analysis. These observations are reflected in the interaction 
energy contributions of our present analysis. The protein-ligand 
interaction energies obtained using PEARLS server has been used 
in other studies on inhibitor discovery such as HIV-1 protease 
[39] and ribonuclease A inhibitors [40] to predict the binding 
affinity values using regression analysis. Log P, remains the main 
deterministic factor for the ligand’s affinity for the protein active 
site with reference to the surrounding solvent environment [41]. 
 
In the present study, we have used the various energetic 
components as independent variables along with logP values, to 
predict the experimental binding affinity. This set of descriptors 
developed from a small set of 25 kinase-inhibitor complexes were 
able to predict IC50 values for 93 test set complexes spanning 4 
orders of magnitude of IC50 values. The same set of descriptors 
was also found to be suitable for family specific regression 
models as well. 
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Figure 3: Scatter plot of experimental and back-check predicted 
IC50 values in (a) 17 cyclic AMP-dependent kinase-inhibitor 
complexes; (b) 12 caesin kinase-inhibitor complexes; (c) 15 
Hepatocyte growth factor receptor kinase-inhibitor complexes; 
(d)12 cyclin-dependent kinase-inhibitor complexes; (e) 16 
mitogen-activated protein kinase-inhibitor complexes. 

As docking methods improve to reproduce conformations 
observed through x-ray crystallographic and NMR determined 
structures, it will be possible to use our present approach to 
predict the IC50 values for various protein targets, more 
significantly for specific protein families. Alternatively, if IC50 
values for kinase-inhibitor complexes are known, the method can 
also be used to predict the pose of a given ligand as well. 
 
Conclusion: 
Despite intensive research over more than two decades, accurate 
prediction of the binding affinities of large set of diverse 
protein�ligand complexes remains one of the most important 
open problems in computational molecular biology [42]. The 
issues currently being addressed are the scoring of modelled 
protein conformations, and including the binding free energy due 
to presence of water molecules [43]. In the present work, we have 
addressed these issues by using energetic and solvent descriptors 
to predict the binding affinity of kinase-inhibitor complexes using 
multiple regression analysis. A high correlation value of 0.9 
between the predicted and experimental binding affinity was 
obtained for a test set of kinase-inhibitor complexes. The method 
was validated by predicting a test of 93 kinase-inhibitor 
complexes covering five kinase families which has shown a good 
predictive ability. Our methodology can provide valuable 
insights for the prediction accuracy of molecular docking 
strategies. Further studies will be required to validate the general 
applicability of these set of descriptors to predict the binding 
affinity for a diverse set of enzyme-inhibitor complexes. 
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