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Abstract 
α-Isopropylmalate Synthase (α-IPMS) encoded by leuA in Mycobacterium tuberculosis (M.tb) is involved in the leucine biosynthesis 
pathway and is extremely critical for the synthesis of branched-chain amino acids (leucine, isoleucine and valine). α-IPMS activity is 
required not only for the proliferation of M.tb but is also indispensable for its survival during the latent phase of infection. It is absent 
in humans and is widely regarded as one of the validated drug targets against Tuberculosis (TB). Despite its essentiality, any study on 
designing of potential chemical inhibitors against α-IPMS has not been reported so far. In the present study, in silico identification of 
putative inhibitors against α-IPMS exploring three chemical databases i.e. NCI, DrugBank and ChEMBL is reported through structure-
based drug design and filtering of ligands based on the pharmacophore feature of the actives. In the absence of experimental results of 
any inhibitor against α-IPMS, a stringent validation of docking results is done by comparing with molecular mechanics/Poisson-
Boltzmann surface area (MM/PBSA) calculations by investigating two more proteins for which experimental results are known. 
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Background: 
Tuberculosis (TB) is an infectious disease caused by 
Mycobacterium tuberculosis (M.tb). Despite the availability of many 
treatment regimes, the global incidence of TB is still very high 
and it remains one of the top ten leading causes of death 
worldwide. 60% of the new cases (out of 10.4 million) reported in 
2015 were from India, Indonesia, China, Nigeria, Pakistan and 
South Africa only, majority of which were due to reactivation of 
dormant bacilli residing inside the host (latent TB infection). 
Severity of the TB burden is further aggravated due to increase in 
the appearance of multidrug-resistant TB (480000 new cases) and 
rifampicin-resistant TB (100000 new cases) [1]. Above 
observations underline the urgent need for the development of 
new effective drugs against the replicative and dormant phase of 
both resistant and non-resistant strains of M.tb. Targeting the 
enzymes essential for the survival of bacterium under 
unfavorable conditions can lead to the successful treatment of the 
disease. 
 
M.tb synthesizes branched-chain amino acids (leucine, isoleucine 
and valine) from α-ketoisovalerate (α-KIV) through leucine 
biosynthesis pathway. This pathway is present in 
microorganisms and plants but is absent in humans. Transposon 
mutagenesis experiments and studies using leucine auxotroph 
have shown leucine biosynthetic pathway is essential for the 
growth and survival of M.tb [2]–[4]. α-IPMS, encoded by leuA 
(Rv3710), catalyze the initial step of the leucine biosynthesis 
pathway, which involves Claisen condensation of acetyl 

coenzyme-A (acetyl-CoA) and α-ketoisovalerate (α-KIV) into α-
isopropylmalate (α-IPM) and coenzyme-A (CoA). This enzyme 
has been shown to be essential for the growth of the bacterium in 
various genomics and proteomics experiments [5]–[7]. α-IPMS is 
also observed to be upregulated in M.tb guinea pig model after 
90-days of infection with the bacterium [8]. The essentiality of α-
IPMS in M.tb and its absence in humans makes this enzyme an 
effective target for the development of therapeutics against 
tuberculosis. 
 
α-IPMS is a homodimeric protein where each monomer unit (644 
residues, 70-kDa) consists of N-terminal catalytic domain and C-
terminal regulatory domain, separated by linker domains 
(subdomain-I & subdomain-II) [9]. The N-terminal domain 
consists of well-conserved TIM barrel ((α/β)8) fold and C-
terminal domain consists of an antiparallel six-stranded βαβ 
sandwich. The active site lies in the TIM barrel domain and 
leucine binds to the regulatory domain in a non-competitive 
manner. The enzyme has been shown to be activated by a 
monovalent ion and a divalent ion is required for the catalytic 
activity [10]. α-IPMS is regulated by the end product of the 
pathway i.e. L-leucine through feedback inhibition mechanism. 
 
High-throughput virtual screening (structure-based drug design 
(SBDD) and ligand-based virtual screening) of prepared chemical 
libraries against the target protein is a powerful technique for 
lead identification. Further, refinement of the leads can be done 
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by calculation of binding free energy through molecular 
dynamics (MD) simulation and molecular mechanics/Poisson-
Boltzmann surface area (MM/PBSA) calculations. These 
techniques have been employed earlier to design potential 
inhibitors against many targets [11]. In M.tb, two inhibitors of 
aspartate-semialdehyde dehydrogenase (ASADH; essential 
enzyme for synthesis of essential amino acids) [12], four 
inhibitors of maltosyl transferase [13] and two inhibitors of GlgB 
(α-1, 4-glucan branching enzyme) [14] have been designed in 
silico using virtual screening, pharmacophore modelling and MD 
simulation. The efficacy of inhibitors designed against GlgB was 
further evaluated in vivo and found to hinder the survival of M.tb 
inside macrophages [14]. These studies support the possibility of 
identification of inhibitors by applying computational techniques. 
In the current work, three chemical libraries have been screened 
against α-IPMS to identify potential inhibitors using a hybrid 
virtual screening approach i.e. structure-based docking followed 
by filtering of ligands based on the pharmacophore features of 
the known active compounds. Further, molecular dynamics 
simulation has been performed to assess the result of docking 
and rescoring of ligands based on binding free energy 
(MM/PBSA) calculation. Eight inhibitors have been identified 
jointly from DrugBank and ChEMBL that can act as potential 
inhibitors against α-IPMS. Validation of the results is done by 
performing docking and MM/PBSA calculations on two different 
protein targets and comparing the binding free energy results 
with the experimental binding free energies.  
 
Methodology 
Virtual Screening: 
Protein Preparation: 
α-IPMS was crystallized as a asymmetric homo-dimer complexed 
with α-KIV and Zinc ion (PDB ID: 1SR9) [9]. The dimeric unit has 
been prepared for molecular docking using Dock Prep Wizard of 
UCSF-Chimera [15]. α-IPMS requires a divalent metal ion for 
catalytic activity but zinc is known to cause inhibition of the 
enzyme, hence while preparing the receptor, zinc ion has been 
replaced with magnesium [10]. The metal ion is coordinated by 
three amino acids (Asp81, His285, His287), α-keto and the 
carboxyl group of α-KIV along with one water molecule (Residue 
No: 1108 in chain A, PDB ID: 1SR9). Only this water molecule has 
been retained while preparation of the receptor. All other water 
molecules have been removed. 
 
Chemical Library Selection and Preparation 
Three chemical libraries i.e. National Chemical Institute (NCI), 
ChEMBL and DrugBank have been selected and filtered on the 
basis of number of heavy atoms present in each compound. 
Compounds having less than 21 heavy atoms have been retained, 
as the active site of α-IPMS is small in size [9]. The final set of 
compounds has been prepared using LigPrep module of 
Schrödinger suite (v2014-4). The ionization state of each of the 
chemicals has been predicted using Epik (pH range 7±2) and a 
maximum of 32 stereoisomers has been generated. A positive set 
of four compounds (α-ketoisovalerate, α-ketovalerate, α-
ketobutyrate and pyruvate) [16], which are substrate to the 
protein, has also been similarly prepared. 
 
Molecular Docking to identify potential inhibitors of α-IPMS 
The prepared chemical libraries and the positive set have been 
screened against the active site of α-IPMS to identify the potential 
inhibitors. Virtual screening has been performed in three phases: 
initial two phases using DOCK6.7 [17] and final phase using 
GOLD v5.2 [18]. In the first phase, all the compounds have been 

screened with less precision and in the second phase, the top 10% 
compounds from the first phase has been screened with extra 
precision (max. orientations: 10000, pruning max. orientations: 
10000, simplex anchor max. iterations: 1000, simplex grow max. 
iterations: 1000 are used as the parameters of the runs) using 
flexible docking of DOCK6.7 program. Grid-based energy 
function has been used for scoring of ligands. In the third phase 
of virtual screening, the top 30 compounds (obtained after 
filtering the chemical library based on pharmacophore properties 
of known actives which is discussed below) have been re-docked 
using GOLD5.0 (GA Run=100). Gold Score has been used for 
scoring of ligands with default input and annealing parameters. 
 
Filtering Based on Pharmacophore Features 
Filtering of chemicals based on pharmacophore features of the 
actives has been performed using Phase module of Schrödinger 
suite (v2014-4). Pharmacophore describes the spatial arrangement 
of features essential for interaction of ligand and receptor. 
Pharmacophore features have been identified using known 
actives i.e. α-ketoisovalerate, α-ketovalerate, α-ketobutyrate and 
pyruvate [16] and then these features have been utilized to filter 
the ligand library after the second phase of docking. 
 
Molecular dynamics simulation and MM/PBSA Rescoring 
Each docking pose has been rescored using MD simulation and 
MM/PBSA calculation. The molecular dynamic simulation of 
ligand-protein complexes has been performed using AMBER14 
software. The ff14SB Amber forcefield was used in the simulation 
[19]. The protonation states of the proteins have been determined 
using PROPKA [20]. General AMBER Force Field (GAFF) 
parameters [21] have been used for the small ligand molecules. 
All simulations have been performed using explicit TIP3P water 
box [22] with 10Å padding and system was neutralized using 
Na+ ions to allow the use of Particle-mesh Ewald (PME) with 
periodic box. Energy minimization of each system has been 
performed in 2-phases; first, for the solvent and ion molecules by 
restraining the protein-ligand complex and second for entire 
system after removing the restraints. The system has been slowly 
heated to 300K in six steps. The simulations have been 
equilibrated for 1ns and 20ns long production run has been 
performed in constant pressure ensemble for each protein-ligand 
complex and the data has been collected at every 2ps interval. 
Only the last 10ns data has been used for MM/PBSA calculation. 
The binding free energy of the protein-ligand complex has been 
calculated using the MM/PBSA-1A approach i.e. only simulating 
the complex forms [23]. 
 
Results and discussion 
Validation of Docking Protocol 
Several methods have been reported earlier for validation of 
docking programs and scoring functions [24]. One of the simplest 
methods employed in this regard is pose reproducibility whereby 
a ligand with known conformation and orientation (typically a 
crystal structure) is re-docked into the protein/target's active site. 
If the docking program is able to reproduce the pose within a 
range of preselected root mean square deviation (rmsd) value 
(rmsd less than 1.5Å or 2Å is preferred), then the docking 
program is considered to have performed successfully. Scoring 
follows this step and ranking of poses using a scoring function. 
The scoring function that accurately ranks the poses based on 
rmsd value is further selected for the study. Another method 
commonly utilized is docking of a decoy set of active and inactive 
compounds, followed by the ranking of ligands. In this method, 
the docking program is evaluated by its ability to select known 
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actives over inactive decoys. 
 
In this work, the hybrid docking protocol has been validated 
using a standard dataset of known actives and decoys of 
Dihydrofolate reductase (DHFR) [25], which is involved in folate 
biosynthesis. The dataset consists of 410 active conformers and 
8367 decoys (total 8777 conformers). The docking runs have been 
performed using the protocol described in materials and methods 
against the target protein DHFR. After the first phase of docking 
using DOCK6.7, the top 10% conformers (877 conformers) from 
the top-ranked virtual screening hit list have been selected for 
second phase. The compound library for the second phase 

consists of 74 actives and 803 decoys. After the second phase of 
virtual screening and filtering the compound library based on 
pharmacophore feature of the ligand (Fitness > 1.5), 184 
conformers have been retrieved. Further, top 30 compounds have 
been selected by ranking ligands based on the number of sites 
matched, fitness and DOCK score. Out of these top 30 
conformers, 29 were active conformers which shows that the 
protocol described above is capable of separating the decoys i.e. 
negative set from the actives against the target protein DHFR. 
Hence, this protocol can be further utilized for other targets 
whose crystal structure is known. 

 

 
Figure 1: A) Relative difference in dock score and binding free energy for inhibitors of DHFR (1-6 represents DH1-DH6) and 
comparison with experimental data. B) Relative difference in dock score and binding free energy for proposed inhibitors of α-IPMS (1-
3 represents D1-D3 and 4-8 represents C1-C5 respectively). C) Ligplot of CHEMBL404748. D) Ligplot of CHEMBL1159999. In ligplot, 
green dashed lines indicate hydrogen bonds and the number indicates the inter-atomic distance in Å. Red arcs with spikes represents 
hydrophobic interactions. Hydrogen Bond forming residues are labeled in green and residues involved in hydrophobic interactions are 
labeled in black. 
 
Molecular Docking of Chemical Libraries and positive sets 
The active site of α-IPMS is a small cavity, which is internally 
lined by hydrophobic residues and externally by polar charged 

residues. Considering the small cavity size, the filtering of 
chemical library based on number of heavy atoms resulted in 
exclusion of large compounds, which may be docked on the 
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surface of the protein and can lead to artificially high scores with 
their inclusion in top score compounds. Generally, these 
chemicals are rejected in the post-docking analysis stage. The 
DOCK score of top ranked compounds from Drugbank database 
ranged from -73.00 kcal/mol to -67.00 kcal/mol and the 
predicted binding affinity (X-score) [26] ranged in between -6.70 
kcal/mol to -6.20 kcal/mol. The GOLD score of these compounds 
ranged from 101.00 to 79.00. Similarly, the DOCK score, GOLD 
score and predicted binding affinity of top ranked compounds 
from ChEMBL ranged from -98.15 kcal/mol to -77.29 kcal/mol, 
107.65 to 87.38 and -7.28 kcal/mol to -6.4 kcal/mol respectively. 
The DOCK score of positive set (P1-P4) ranged in between -50.98 
kcal/mol to -45.15 kcal/mol. The positive set compounds share 
identical functional group and differ only in the distal portion of 
the chain. The proximal end is acidic in nature (keto acid) and 
distal portion is hydrophobic in nature, which differs only in 
alkyl chain. The MCS tanimoto similarity for the four positive 
compounds varies from 0.75 to 0.87 and hence we have used 
pharmacophore features of known actives to filter the 
compounds rather than similarity. This filtering step using 

pharmacophore features of the known actives removed 584 
compounds from DrugBank, 13978 from NCI and 38546 
compounds from ChEMBL respectively. This step ensured the 
presence of essential features in the filtered compounds. The 
number of hydrogen bonds for the best docking poses obtained 
by molecular docking varied from 6 for CHEMBL1615775 to 12 
for CHEMBL404748 and the hydrophobic interactions from 22 to 
50. Arg80, Tyr169, His285 and His287 are major hydrogen bond 
forming residues. Except for CHEMBL1162019, Arg80 forms 
hydrogen bond with the entire top score compounds. The 
compounds also form hydrogen bonds with the residues of the 
chain B (Ser376B, Gly377B, Ser378B, His379B, Tyr410B), which are 
present in the vicinity of the active site. All the 15 compounds 
have higher GOLD score and lower DOCK score than the 
positive set and hence these compounds may act as inhibitors 
against α-IPMS. The compounds of NCI has been discarded 
because these compounds ranked lower than the positive set and 
further, these compounds did not form hydrogen bond with the 
critical residues.  

 
Table 1: Molecular docking and MM/PBSA results for inhibitors of DHFR (DH1-DH6), inhibitors of COMT (CO1-CO6) and positive 
set (P1-P4), inhibitors from DrugBank (D1-D3) & inhibitors from ChEMBL (C1-C5) of α-IPMS.  

Id Drugbank/ ChEMBL/ZINC Id /Name Dock Score 
(kcal/mol) 

Δ Dock Score b 

(kcal/mol) 
ΔΔGexp a,b 

(kcal/mol) 
ΔΔGbind (MM/PBSA) b 

(kcal/mol) 
DH1 ZINC03814961 -42.65 0.82 3.15  2.80 
DH2 ZINC00006585 -41.43 2.04 4.80 5.69 
DH3 ZINC03814951 -43.25 0.22 0.38 6.03 
DH4 ZINC03814865 -41.58 1.89 2.35 0.66 
DH5 ZINC03814952 -43.47 0.00 4.02 3.72 
DH6 ZINC01489187 -41.95 1.52 0.00 0.00 
CO1 CHEMBL3425734 -28.54 1.08  0.00  4.38 
CO2 CHEMBL3425743 -26.28 3.34 0.77 9.58 
CO3 CHEMBL3425722 -23.26 6.36 1.73 7.98 
CO4 CHEMBL3425737 -29.62 0.00 2.06 0.00 
CO5 CHEMBL3425725 -24.92 4.70 2.55 11.28 
CO6 CHEMBL3425728 -26.38 3.24 2.87 11.79 
P1 α-ketoisovalerate -49.74 45.24 --- 50.54 
P2 α-ketovalerate -50.98 44.00 --- 58.07 
P3 α-ketobutyrate -49.19 45.79 --- 61.75 
P4 Pyruvate -45.15 49.83 --- 70.64 
D1 DB04182 -73.36 21.62 --- 27.60 
D2 DB03502  -67.88 27.10 --- 39.30 
D3 DB04304 -67.01 27.97 --- 39.98 
C1 CHEMBL404748 -92.85 2.13 --- 0.00 
C2 CHEMBL1159999 -94.98 0.00 --- 13.36 
C3 CHEMBL1235112 -94.01 0.97 --- 30.73 
C4 CHEMBL1161477 -80.4 14.58 --- 37.36 
C5 CHEMBL1615775 -77.29 17.69 --- 38.86 

a ΔGexp values have been calculated using the formula below : ΔG=−RTlnki where, R = 1.9872036 * 10-3  kcal K-1 mol-1, T = 300 K and ki 
=IC50/	
   (1+S/Km) b Δ values (i.e. Δ Dock Score, ΔΔGexp and ΔΔGbind (MM/PBSA)) have been calculated by subtracting the binding free 
energy of reference compound (Compound with minimum binding free energy) obtained in each group.   
 
MM/PBSA rescoring identifies CHEMBL404748 and 
CHEMBL1159999 as potential inhibitors of α-IPMS. 
In the final step of our work, MD Simulation has been carried out 
for all the 15 identified inhibitors through molecular docking and 
the positive set. Molecular Dynamic Simulation has also been 
carried out for six known inhibitors of DHFR (DH1-DH6) and six 
known inhibitors of Catechol-O-methyltransferase (COMT) 
(CO1-CO6) for benchmarking of MM/PBSA results [27]. The 
binding free energy of each protein-ligand complex has been 
calculated using MM/PBSA approach. The results are 
summarized in Table 1. Figure 1A shows the comparison of 
binding energy calculated through docking (dock-score) and 
MM/PBSA with the experimental data for DHFR. It can be seen 
from the figure that MM/PBSA calculation for inhibitors of 

DHFR shows fair correlation with the experimental data and 
correctly identified the inhibitor with the lowest binding free 
energy. The MM/PBSA calculation for inhibitors of COMT also 
shows reasonable correlation with the experimental data (Table 
1), which shows that MM/PBSA calculations can successfully 
capture the relative difference in binding free energy. 
 
Now we describe the results of MM/PBSA for a-IPMS. The 
binding free energy for positive set ranged from -34.43 ± 3.78 
kcal/mol (α-ketoisovalerate) to -14.33 ± 3.86 kcal/mol (Pyruvate). 
The binding free energy of chemicals from DrugBank lie in 
between -57.37 ± 4.51 kcal/mol to -21.03 ± 5.27 kcal/mol and 
ChEMBL from -84.97 ± 7.97 kcal/mol to -16.60 ± 8.28 kcal/mol. 
Several chemicals identified through molecular docking as 
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potential inhibitors failed to rank well in MM/PBSA rescoring as 
can be seen from Table 1. This can be attributed to lack of 
elaborate and accurate scoring functions used in docking. Eight 
compounds, three from DrugBank (DB04182, DB03502, DB04304) 
and five from ChEMBL (CHEMBL404748, CHEMBL1159999, 
CHEMBL1235112, CHEMBL1161477 and CHEMBL1615775) 
ranked better than all the positive sets in MM/PBSA rescoring 
(Table 1). The relative differences in binding free energy of these 
eight compounds are shown in Figure 1B. The lowest binding 
free energy has been obtained for CHEMBL404748 and 
CHEMBL1159999, which are -84.97 ± 7.97 kcal/mol, and -71.61 ± 
4.27 kcal/mol respectively. The binding free energy of these two 
chemicals is approximately two times lower than the catalytic 
substrate and other actives, hence these two chemicals can be 
potential inhibitors; however, further experimental validation is 
required. The LigPlot [28] of interactions involving ligand i.e. 
CHEMBL404748 and CHEMBL1159999 with the receptor 
residues is shown in figure 1C & 1D. CHEMBL404748 (Glucitol 
Bis-Phosphate) is a known potential inhibitor of rabbit muscle 
aldolase (representative of class I aldolases), Helicobacter pylori, 
and Saccharomyces cerevisiae aldolases (representative of class II 
Faldolases) [29]. It is to be noted that the solute entropy 
calculation is not performed in the MM/PBSA calculation, which 
may change the numerical values of the binding free energy 
reported. It is expected that some of the proposed compounds 
will be investigated experimentally to understand their efficacy. 
 
Conclusion 
In this work, an integrated approach has been used to design 
inhibitors against α-IPMS considering the structural properties of 
protein and pharmacophore properties of known active ligands. 
To ensure diverse set of chemical libraries, virtual screening has 
been performed using three chemical libraries viz. DrugBank, 
NCI and ChEMBL. The generation of focused library could help 
in reducing computational time for virtual screening. Altogether, 
from DrugBank and ChEMBL, eight potential inhibitors of α-
IPMS has been found which have relatively better binding 
affinity than known active compounds, out of which 
CHEMBL404748 and CHEMBL1159999 are suggested to be the 
most potent against α-IPMS. 
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