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Abstract: 
A microarray DNA sequencing experiment for a molecule of N bases produces a 4xN data matrix, where for each of the N positions 
each quartet comprises the signal strength of binding of an experimental DNA to a reference oligonucleotide affixed to the microarray, 
for the four possible bases (A, C, G, or T). The strongest signal in each quartet should result from a perfect complementary match 
between experimental and reference DNA sequence, and therefore indicate the correct base call at that position. The linear series of 
calls should constitute the DNA sequence. Variation in the absolute and relative signal strengths, due to variable base composition and 
other factors over the N quartets, can interfere with the accuracy and (or) confidence of base calls in ways that are not fully understood. 
We used a feed-forward back-propagation neural network model to predict normalized signal intensities of a microarray-derived 
DNA sequence of N = 15,453 bases. The DNA sequence was encoded as n-gram neural input vectors, where n = 1, 2, and their 
composite. The data were divided into training, validation, and testing sets. Regression values were >99% overall, and improved with 
increased number of neurons in the hidden layer, and in the composition n-grams. We also noticed a very low mean square error 
overall which transforms to a high performance value. 
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Background: 
DNA sequences although letters contain a lot of information. 
They are not numeric in nature but their conversion to numerical 
values en-ables the application of powerful digital signal 
processing techniques to them. Some desirable properties of a 
DNA numerical representation are given in [3]. Some forms of 
DNA numerical representations include: Z-curves and DNA 
walks [4], Voss method, quaternion technique and paired 
nucleotide/atomic number representation [5], paired numeric 
representation [6], double curve and structural profile method [7] 
and electron-ion interaction potential [8]. N-gram method used in 
this paper was first introduced by C.E Shan-non in 1948 [9], and 
makes use of data in a sliding window fashion and neural 
network learning methods provide a robust approach to 
approximating real-valued, discrete-valued and vector-valued 
target functions [12] like DNA numerical. The study of artificial 
neural networks has been inspired in part by the observation that 
biological learning systems are built of very complex webs of 
interconnected neurons [10, 11, 12], where the neurons 
communicate through a large set of interconnections with 
variable strengths (weights) in which the learned information is 
stored [13]. Each neuron computes a weighted sum of its y input 

signals. The activation function for neurons is the sigmoid 
function defined [12] as  
 
δ(y) = 1 / (1+e-y) – (1) 
 
Where y is the weighted sum of the inputs. The output of the 
sigmoid function ranges from 0 to 1, increasing monotonically 
with its input and the weights of the interconnections between 
the different neurons are adjusted during the training process to 
achieve a desired input/output mapping. The ideas from 
artificial neural net-works have led to computational analysis of 
human DNA sequence [14], single base pair discrimination of 
terminal mismatches [15], biological phenomena through 
computational intelligence [16], human donor and acceptor sites 
prediction [17], coding region recognition and gene identification 
[18], predicting transmembrane domains of proteins [19] and the 
prediction of nucleotide sequences using genomic signals [20, 21]. 
 
In this paper, an Affymetrix [1] experiment output, which has 
numerical values, is normalized and partitioned into training; 
testing and validation set using a Matlab [2] neural network with 
4 and 16 numbers of nodes in the input layer. The influence of the 
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length of nucleotide in the nucleotide hybridization intensity [22] 
lets us replace the nucleotide and di-nucleotide sequences with 
their respective n-gram counts. The n-gram ratios are shown in 
Table 1 and Table 2. 
 
Experimentation is done with different number of neurons in the 
hidden layer that give an optimal prediction performance. The 
out-put node layer has in our case 4 nodes reflecting our choice of 
sequence signals to predict. The schematics of DNA neural 
network architecture are shown in Figure 1. The DNA sequence 
is first converted by a sequence-encoding schema into neural 
network input vectors (ratios of n-gram). The neural network 
then predicts those normalized intensities according to the 
sequence information embedded in the neural interconnections 
after network training. 
 
Methodology: 

 
Figure 1: A neural network system for signal intensity prediction. 
The DNA sequences are first converted into n-gram profiles as 
input vectors. The neural network then predicts the normalized 
signal intensities after network training.  
 
The dataset is adopted from the Cambridge Reference Sequence 
with ascension number NC--012920 and is made of 15,453 rows 
and 6 columns where 2 of the columns are the n-grams for n= 1,2 
and the other 4 columns represent the normalized intensities for 
Adenine, Cytosine, Guanine and Thymine. We extract every 26th 
line of the dataset, which reduces the dataset to 594 rows (lines). 
We use 1-grams and 2-grams independently to predict the 
normalized intensities for the four nucleotides ACGT and also 
use a combination (composition) of the 1-gram and 2-gram to 
repeat the analysis. The algorithmic steps for our data 
manipulation are as follows: 
 
1: Compute n-gram profiles of the DNA data set using Python 
programming language. 
2: Calculate the nucleotide and dinucleotide frequencies of these 
profiles. 
3: Do substitution of the nucleotides and dinucleotide strings 
with their respective frequencies. 
Do the following on the intensity profiles: 

4: Calculate the highest and lowest value along each row.  
5: Do normalization along each row using.  
N (i) = (yi - min) / (max - min) 
Where yi is the actual value of the attribute max, min and I are 
the maximum and minimum values along each row. 
6: Repeat step 5 for every row of intensity profile.  
7: Combine results obtained from step 1 to step 6. 
8: Extract every 26th line from the data set after the operations 
above. 
9: Use Matlab subroutines to get performance plots and 
regression values. 
The flowchart for the steps is shown in Figure 2. 
 
Data evaluation functions: 
In Matlab neural networks, there are functions that help check 
whether things are consistent. Two of them, which are used in 
this paper, are to avoid subsequence overlap and possibility of 
random match 
 
Performance: This is a plot of the training, validation and test 
errors. It shows the mean square error MSE dynamics in a 
logarithmic scale. The training MSE is always decreasing and the 
least. Validation and test MSE are of more interest and are 
supposed to be similar for a near perfect training. Training on the 
data set normally stops when there is a consistent in-crease in the 
validation error for a given number of iterations. The best 
performance is taken from the epoch with the lowest validation 
error. Figure 3 shows a performance plot. 
 
Regression: This performs a linear regression analysis between 
the network outputs and the corresponding targets. The solid line 
represents the best-fit linear regression line between outputs and 
targets. In an ideal situation, i.e. with zero error, the points are 
placed on the target=output line. High regression values are 
indication of good results. The scatter plot is helpful in showing 
that certain data points have poor fits. Figure 4 shows a 
regression plot. 
 
Results: 
The regression value R, so computed by the neural network 
deter-mines how robust the prediction is. The higher the R values 
the better and a smaller MSE in terms of performance implies 
good pre-diction. We compare the performances of the networks 
with 1-gram and 2-gram with different number of neurons in the 
hidden layer. The number of neurons in the hidden layer has 
been varied between 20 and 40 with step size 5 as a matter of 
choice and hopefully to find the optimal network architecture. 
 
Table 3 gives a summary of the regression values extracted from 
1-gram outputs for ACGT and their averages in terms of training, 
validation and testing using every 26th line (row) with Matlab 
regression toolkit. The table shows maximum regression values, 
which corresponded to training set which is consistent with the 
expected result. 
 
Table 4 gives a summary of the regression values and their aver-
ages using 2-gram. The table shows maximum regression values 
for ACGT again corresponding to the training set. 
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Table 5 gives a summary of the regression values and their aver-
ages using 1-2-gram composition. Again, the table shows the 

maximum regression values for ACGT corresponding to the 
training set, which is indicative of a good result. 

 

 
Figure 2: Algorithmic flowchart for computing n-gram profiles and doing normalization on the DNA sequence.  
 

  
Figure 3: A 1-2 gram composition performance plot with 40 neurons in the hidden layer showing training, validation and testing data 
set in terms of mean square error. 
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Figure 4: A 1-2-gram composition regression plot with 20 neurons in the hidden layer showing training, validation, testing and overall 
regression values. 
 
Tables 1 and 2 show the percentages (ratios) from Affymetrix 
[1] dataset of nucleotides and dinucleotides respectively. 
Table 1: The nucleotide percentages (ratios) 
 Nucleotides   A   C   G   T 
Ratios 0.31  0.31  0.13  0.25 
 
Table 2: The dinucleotide percentages (ratios) 
Dinucleotdes Ratios 
AA 0.10 
AC 0.09 
AG 0.05 
AT 0.07 
CA 0.09 
CC 0.11 
CG 0.03 
CT 0.09 
GA 0.04 
GC 0.04 
GG 0.03 
GT 0.03 
TA 0.08 
TC 0.07 
TG 0.03 
TT 0.06 
 
Table 3: Best performance and regression values for 1-gram 
with varying number of neurons in the hidden layer 
 
 

No. of neurons Best perf. Values Training Validation Testing 
20 0.003209 0.99202 0.99054 0.97872 
25 0.003173 0.99788 0.99055 0.98080 
30 0.003137 0.99211 0.99070 0.97821 
40 0.003195 0.99205 0.99049 0.97869 
Averages 0.003178 0.99194 0.99057 0.97911 
 
Table 4: Best performance and Regression values for 2-gram 
with varying number of neurons in the hidden layer 
No. of neurons Best perf. Values Training Validation Testing 
20 0.027319 0.94319 0.91605 0.88381 
25 0.025913 0.93830 0.93036 0.90905 
30 0.022780 0.93570 0.93020 0.90725 
40 0.022379 0.93779 0.93157 0.89763 
Averages 0.024598 0.93875 0.92705 0.89944 
 
Table 5: Best performance and Regression values with 1-2-gram 
with varying number of neurons in the hidden layer 
No. of neurons Best perf. values Training Validation Testing 
20 0.002849 0.99378 0.99148 0.98010 
25 0.002666 0.99395 0.99212 0.98136 
30 0.003130 0.99420 0.99078 0.98123 
40 0.002525 0.99388 0.98245 0.98128 
Averages 0.002793 0.99395 0.99171 0.98099 
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Discussions: 
The absolute set comprises 4x594 values, where the four values 
are the absolute signal strengths of the bases [ACGT] on each of 
594 lines. Absolute signal strengths are normalized to values 
between 0.0  -1.0, from which the Neural Network / n-gram 
process predicts values (≥0.0-1.0). The Prediction set correctly 
identifies the highest value (1.0) in the normalized set for all 594 
lines, which is, of course, the highest value and therefore the 
correct base call in the absolute set. This is not necessarily a trivial 
result, as the predictive function must accommodate all targets in 
the 4 x 594 sets. Using regression toolkit, we observed from 
Tables 3, 4 and 5 that the best regression values in terms of 
training, testing and validation were gotten when we used the 1-
2-gram composition with best performance value of 0.002525 
with 40 neurons in the hidden layer as shown in Table 5 which 
translates to 99.9975 % accuracy. This shows a very low mean 
square error. 
 
Conclusion: 
The results of this study show that Artificial Neural Networks 
based n-gram model for prediction of normalized signal 
intensities is at least accurate based on high regression numerical 
values obtained with their attendant low mean square errors 
which is a measure of performance. Hence, we can use n-gram 
model to predict the signal intensities via their normalized values 
from Affymetrix data. The result produced from this research can 
still be used if one wants to investigate individual nucleotide 
intensities along a given sequence. We have used mainly 1-gram 
and 2-gram to carry out analysis. One may improve upon these 
results if higher n-gram values and their different compositions 
are considered. An effort could also be made to get optimal 
number of neurons in the hidden layer that give maximal 
regression values and lower mean square errors. An increase in 
regression value to say 0:999 are indicative of a much better 
prediction. Other forms of normalization like Min-Max, Z-score 
and normalization by decimal scaling could also be explored to 
compare results. One can also choose other forms of data 
evaluation functions in Mat-lab to check if these results are 
consistent. As a form of confirmation, other forms of numerical 
representations of DNA sequence mentioned earlier can be used 

to predict normalized signal intensities recorded by platforms 
like Affymetrix Genechip and useful comparisons can be made.  
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