

www.bioinformation.net

Volume 14(6)

Hypothesis

Comparative analysis of prokaryotic and eukaryotic transcription factors using machine-learning techniques

Nilkanta Chowdhury & Angshuman Bagchi*

¹Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, Nadia 741235, India. Angshuman Bagchi – E-mail: angshu@klyuniv.ac.in, angshuman_bagchi@yahoo.com; Telephone: +919051948843; Fax: +913325828282; *Corresponding author

Received June 24, 2018; Revised June 28, 2018; Accepted June 28, 2018; Published June 30, 2018

doi:10.6026/97320630014315

Abstract:

The DNA-protein interactions play vital roles in the central dogma of molecular biology. Proper interactions between DNA and protein would lead to the onset of various biological phenomena like transcription, translation, and replication. However, the mechanisms of these well-known processes vary between prokaryotic and eukaryotic organisms. The exact molecular mechanisms of these processes are unknown. Therefore, it is of interest to report the comparative estimate of the different properties of the DNA binding proteins from prokaryotic and eukaryotic organisms. We analyzed the different sequence-based features such as the frequency of amino acids and amino acid groups in the proteins of prokaryotes and eukaryotes by statistical measures. The general pattern of differences between the various DNA binding proteins for the development of a prediction system to discriminate between these proteins between prokaryotes and eukaryotes is documented.

Keywords: Prokaryotic and Eukaryotic Organisms; DNA binding proteins; Transcription factors; Distribution of amino acid residues.

Background:

DNA protein interactions as in DNA transcription are at the heart of the central dogma of molecular biology. The transcription is the process of transfer of genetic information from DNA molecules. The process is regulated by a set of proteins. These proteins are referred to as the transcription factors (TFs) **[1]**. The mechanism of the process is a very complex one and is mainly mediated by a complex interplay between the TFs with DNA. However, the mechanism of DNA transcription is different in prokaryotic and eukaryotic organisms **[2, 3]**.

However, the molecular details of the transcription processes in the pro- and eukaryotic organisms are still at its infancy. In this work, we tried to analyze the different aspects of the transcription factors from pro- and eukaryotic organisms. For the comparison purposes, we used the amino acid sequences of the DNA binding proteins (DBPs) and transcription factors (TFs) from UniProt [4].

We compared the TFs using their sequence information only as sequence is more abundant than structure **[5]**. The main ISSN 0973-2063 (online) 0973-8894 (print)

motivation of carrying out the work is to discriminate between the different classes of microorganisms. We, for the first time, put forward some plausible discriminatory features between the TFs from the different branches of organisms. Interestingly, the TFs from the pro- and eukaryotic organisms can be distinctly identified using the amino acid frequency analyzes in the TFs. We also analyzed the statistical efficacies of the features used in the study to discriminate between the different classes of microorganisms using machine-learning techniques. The ideas regarding these features may further be utilized to come up with a prediction system to discriminate between the different branches of organisms.

Methodology:

Data collection:

We downloaded the sequences of DNA binding proteins (DBPs) from UniProt [4]. We collected the amino acid sequences of the DNA binding proteins from 1012 prokaryotic organisms and 1425 eukaryotes. We divided our dataset into two groups, the largest group containing the whole DBP data, and a small subgroup

Open access

containing the transcription factor (TF) sequences, which were also present in the DNA binding protein dataset. The data collection process was carried out using an in-house tool written in Python (Figure 1).

Redundancy check to the dataset:

The raw dataset may be biased because of having multiple copies of a single sequence. We, therefore, performed a redundancy check, by means of distance matrix calculation. The distance matrix was generated by Hamming distance algorithm [6, 7]. After this redundancy check, we were able to eliminate the redundancy in the dataset and prepared a clean dataset. The clean dataset contained 270 DBP sequences from prokaryotes and 347 DBP sequences from eukaryotes; among them, there were 92 sequences of TF from prokaryotes and 182 sequences of TF from eukaryotes. So the DBP dataset contained 270 prokaryotic and 347 eukaryotic sequences. As the eukaryotic DBP sequences were present in higher number than the prokaryotic DBP sequences, we had split the eukaryotic DBP sequences into two sets. Eukaryotic DBP set 1 contained sequences starting from 1 to 270 and eukaryotic DBP and set 2 contained sequences starting from 78 to 347 so that there were equal numbers of amino acid sequences in the datasets. For the same reason, the eukaryotic TF dataset was split into two sets. TF set 1 contained sequences starting from 1 to 92 and TF set 2 contained sequences starting from 91 to 182. Thus all the datasets were balanced. The distribution of the dataset is shown in Table 1.

Tublet. The distribution of the dataset.				
DNA Binding Protein (DBP) dataset		Transcription Factor (TF) Dataset		
Prokaryote 1 - 270	Eukaryote Set-1 1 - 270	Prokaryote 1 - 92	Eukaryote Set-1 1 - 92	
	Eukaryote Set-2 78 - 347		Eukaryote Set-2 91 - 182	

The list of UniProt IDs used in these datasets was present in Table S1 (see Supplementary data).

Frequency Calculation:

After the preparation of these clean datasets, we performed amino acids and amino acids group frequency calculations. We categorized the amino acid groups into Hydrophobic (HB), Hydrophilic (HI), Charged (CR), Basic (BS) and Acidic (AC) [8]. This frequency calculation was done to normalize the dataset. The entire frequency calculation was done using an in-house python script. We had calculated the frequency of amino acids and amino acid groups separately for the two datasets DBP and TF, and separately for eukaryotic set1 and eukaryotic set 2.

Machine learning using WEKA:

We used the overall amino acid frequencies and amino acids group frequencies of the prokaryotic and eukaryotic organisms as features to distinguish between prokaryotic and eukaryotic organisms using the tool WEKA [9]. WEKA is a tool, containing a collection of machine learning algorithms, is commonly used in data mining problems in bioinformatics. We have used the

ISSN 0973-2063 (online) 0973-8894 (print)

316

Support vector machine (SVM) algorithm and the SMO classifier [10] with 10 fold cross-validation. The 10 fold cross validation is a kind of default test option of WEKA. It randomly splits the dataset into training and testing datasets and runs the test. It does this operation 10 times with random splitting of the input data into training and testing datasets. We prepared the input dataset for WEKA using data distribution as described in table 1.

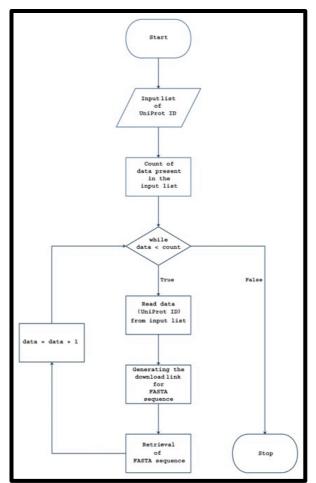


Figure 1: Flowchart diagram of the in-house python tool.

Results:

Amino acids and amino acid group frequency

A distinguishable difference was found in the frequency patterns between eukaryotic and prokaryotic amino acid sequences in the DNA binding proteins. This distinguishable difference pattern in amino acid and amino acid group frequency can be used to discriminate them. The bar graph (Figure 2) and boxplot (Figure 3 and Figure 4) were used to decipher the patterns of the differences.

Machine learning results:

We found that amino acids and amino acid group frequency can be used as features to train a SMO classifier in WEKA to distinguish prokaryotic and eukaryotic DNA binding proteins on

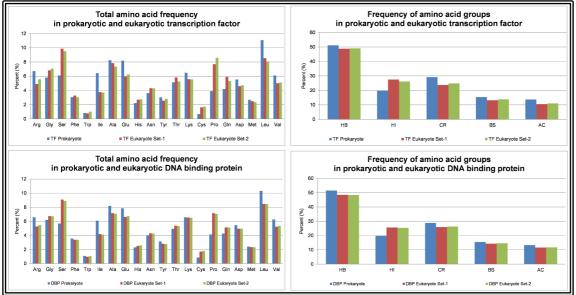
Open access

the basis of their amino acid and amino acid group frequency as given in **Table 2**. **Table 2**: Results obtained from WEKA analysis.

			(Tra	nscription	n Factor Set-1)				
		ber of Instar			· · · ·		184		
Correctly Classified Instances					94.0217 %				
	Incorrectly Cl	assified Inst	ances				5.9783 %		
			=== Deta		racy By Class =	==			
	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
	0.924		0.955	0.924	0.939	0.881	0.94	0.92	Prokaryot
	0.957	0.076	0.926	0.957	0.941	0.881	0.94	0.908	Eukaryot
Weighted Avg.	0.94	0.06	0.941	0.94	0.94	0.881	0.94	0.914	
			(Tra	nscription	n Factor Set-2)				
	Total Num	ber of Instan	ices	_			184		
	Correctly Cla	assified Insta	ances				93.4783 %		
	Incorrectly Cl	assified Inst	ances				6.5217 %		
			=== Deta		racy By Class =				
	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
	0.924	0.054	0.944	0.924	0.934	0.87	0.935	0.911	Prokaryot
	0.946	0.076	0.926	0.946	0.935	0.87	0.935	0.902	Eukaryot
Weighted Avg.	0.935	0.065	0.935	0.935	0.935	0.87	0.935	0.907	
			,	A Binding	; Protein Set-1)				
		ber of Instan					540		
	Correctly Cla						88.3333 %		
	Incorrectly Cl	assified Inst					11.6667 %		
					racy By Class =		DOG		
	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
	0.863	0.096	0.9	0.863	0.881	0.767	0.883	0.845	Prokaryot
Waishtad Arra	0.904 0.883	0.137 0.117	$0.868 \\ 0.884$	0.904 0.883	0.886 0.883	0.767 0.767	0.883	0.833 0.839	Eukaryot
Weighted Avg.	0.885	0.117	0.004	0.005	0.885	0.767	0.883	0.659	
				A Binding	; Protein Set-2)				
		ber of Instan					540		
	Correctly Cla						90 %		
	Incorrectly Cl	assified Inst		•1 1 4			10 %		
	TD Data	ED Data			racy By Class =		POC Arres	DDC Amor	Class
	TP Rate 0.904	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
	0.904 0.896	0.104 0.096	0.897 0.903	0.904 0.896	0.9 0.9	0.8 0.8	0.9 0.9	0.859 0.861	Prokaryot
Weighted Avg.	0.896	0.096	0.903	0.896	0.9	0.8	0.9	0.861	Eukaryot
weigineu Avg.	0.9	0.1	0.9	0.9	0.9	0.0	0.9	0.00	

Discussion:

Data show that the sequence-based features of the DBPs and TFs could very well be used to distinguish between these classes of organisms. In all our analyses, we obtained an overall accuracy greater than 85% and an AUC value of 0.9. However, we had to use a comparatively small dataset due to paucity of data in the databases. None-the-less, this is the up to date data available till the date mentioned in the manuscript. Available predictors combine both the sequence and structural information for the discrimination purposes. Our predictor uses only sequence information and therefore may be considered a more general one as sequence information is more abundant than structural


information. For extraction of the features, we used an in-house script written in python.

Acknowledgment:

The authors acknowledge University of Kalyani, Kalyani (W.B.) India and DBT funded Bioinformatics Infrastructure Facility (BIF) for providing infrastructure facilities. NC would like thank the UGC, Govt. of India for financial support. The infrastructural supports from DBT, India (San No. 102/IFD/SAN/1822/2015-2016 dated August 06 2015) and ICMR (BIC/12(02)/2014), Govt. of India are duly acknowledged.

Open access

Figure 2: The bar-graph representation of amino acids and amino acid group frequency in prokaryotes and eukaryotes (Blue: Prokaryote; Red: Eukaryote Set-1; Green: Eukaryote Set-2).

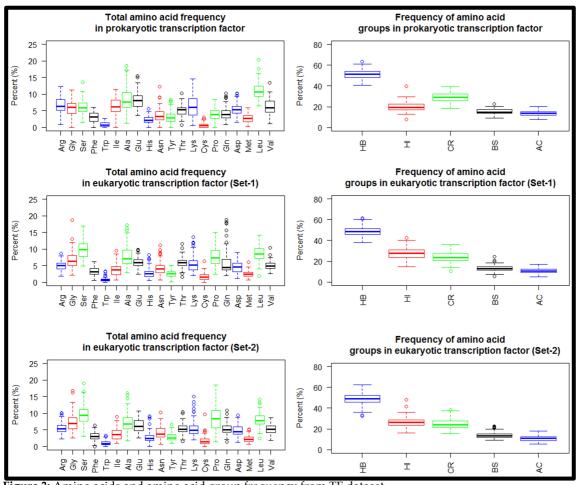


Figure 3: Amino acids and amino acid group frequency from TF dataset.

ISSN 0973-2063 (online) 0973-8894 (print)

Bioinformation 14(6): 315-326 (2018)

BIOINFORMATION Discovery at the interface of physical and biological sciences

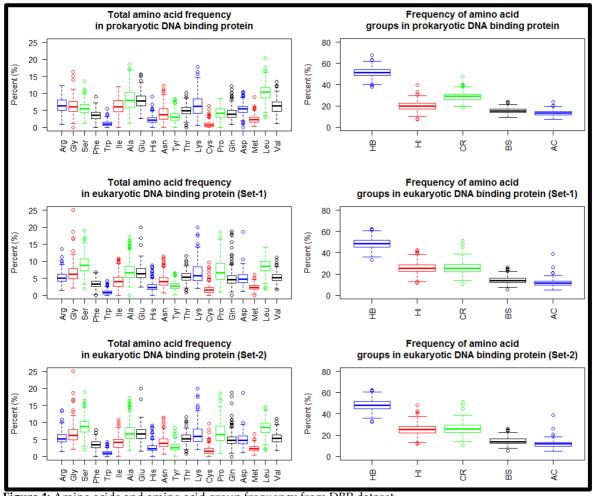


Figure 4: Amino acids and amino acid group frequency from DBP dataset.

References:

- [1] Latchman DS. International Journal of Biochemistry and Cell Biology. 1997, 29:1305. [PMID: 9570129]
- [2] Spitz & Furlong, Nat. Rev. Genet. 2012, 13:613. [PMID: 22868264]
- [3] Bagchi A. Gene. 2016, 586:274 [PMID: 27083770]
- [4] UniProt Consortium, Nucleic Acids Res. 2013, 41:D43. [PMID: 23161681]
- [5] Al-Shahib A et al. BMC Genomics. 2007, 8:78 [PMID: 17374164]
- [6] Hamming RW. Bell Syst. Tech. J. 1950, 29:147.
- [7] Blackburne BP and Whelan S. Bioinformatics. 2012, 28:495. [PMID: 22199391]
- [8] Nelson DL & Cox MM. Lehninger Principles of Biochemistry. 2005, 4.
- [9] Frank E et al. "Weka," in Data Mining and Knowledge Discovery Handbook, 2005, 1305.
- [10] Frank E et al. Bioinformatics. 2004, 20:2479 [PMID: 15073010]

Edited by P Kangueane

Citation: Chowdhury & Bagchi. Bioinformation 14(6): 315-326 (2018) **License statement**: This is an Open Access article which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. This is distributed under the terms of the Creative Commons Attribution License

Open access

Supplementary Data:

Table S1: List of UniProt id of the FASTA files used as dataset				
Prokaryotic	Eukaryotic	Prokaryotic	Eukaryotic	
TF	TF	DBP	DBP	
A0A0H2VJZ8	A0AVK6	A0A072Z681	A0AVK6	
A0QZ11	A2D9X4	A0A0H2VJZ8	A0JP82	
A0R6I8	G0SB31	A0A0H2XIU6	A2D9X4	
A6T8N1	G4NEJ8	A0QZ11	A5J036	
B2SU53	L7I1M8	A0R6I8	A6ZL36	
B8FW11	O00327	A3DJ38	B4F6I0	
C3W947	O00482	A3FMN7	C0JWR6	
D5KM69	O15350	A5TY69	C7SWF3	
G3XCY4	O15409	A6T8N1	D2W6T1	
O34777	O43435	B2MU09	D9IWL3	
O34817	O43524	B2SU53	D9J034	
O66551	O54790	B8FW11	E0YCK3	
O66858	O94916	C1D7P6	F7WD42	
O68014	O95238	C3W947	G0SB31	
O69245	P01100	D4EMQ0	G4NEJ8	
P03023	P01106	D5KM69	L7I1M8	
P03052	P02340	D5MNX7	M1GSK9	
P06533	P02833	D9N168	O00327	
P06534	P02836	E1C9K5	O00327 O00482	
P07674	P03001	G3XCY4	O13988	
P0A0I7	P03069	O25100	O13388 O14770	
P0A0N4	P03372	O25386	O14770 O14862	
P0A247	P04150	O25758	O14862 O15350	
POA4T9	P04386	O25841	O15409	
P0A6X7	P04637	O34777	O15527	
POA881	P05412	O34817	O43435	
P0A8U6	P05554	O52512	O43524	
P0A8V6	P05725	O66551	O54790	
POACIO	P06536	O66659	O74859	
POACJ8	P06601	O66858	O75362	
POACP7	P06602	O68014	O75531	
POACS2	P07270	O68557	O80358	
POACT4	P07272	O68847	O82175	
POAF28	P08046	O69245	O94468	
POAFJ5	P08151	O83028	O94916	
P0AG30	P08638	O87365	O95238	
P0AGK8	P09077	O87963	O95243	
P0C1U6	P09631	P00582	O95551	
P0DJL7	P09956	P00642	P00639	
P10026	P0CS82	P00648	P00734	
P17893	P0CY08	P02958	P01100	
P21866	P0CY10	P03004	P01106	
P22262	P10037	P03013	P01127	
P23873	P10085	P03018	P01837	
P23874	P10276	P03023	P02263	
P25144	P11473	P03052	P02340	
P27709	P11831	P03067	P02833	
P33905	P11938	P03856	P02836	
P39075	P13297	P04390	P03001	
P40676	P13393	P04395	P03069	

ISSN 0973-2063 (online) 0973-8894 (print)

Bioinformation 14(6): 315-326 (2018)

Open access

P44558	P14859	P04995	P03372
P46828	P14921	P05050	P03870
P68261	P15036	P05102	P03880
P71039	P15207	P05327	P03882
P96711	P15806	P05523	P04150
P9WGZ1	P16236	P06134	P04275
P9WJB7	P17676	P06533	P04386
P9WME9	P17679	P06534	P04637
P9WMF8	P17789	P06612	P05231
P9WMH1	P18113	P07013	P05412
P9WMH3	P19419	P07674	P05554
P9WPY9	P19544	P08394	P05725
Q0P6M2	P19793	P09184	P06401
Q1D4I5	P19838	P09546	P06536
Q2ACK9	P20153	P09883	P06601
Q2FZ56	P20226	P09980	P06602
Q32WH4	P20263	P0A0I7	P06766
Q3ZD72	P20393	P0A0N4	P06786
Q45782	P20823	P0A247	P07199
Q46731	P21952	P0A459	P07270
Q46864	P22121	P0A4T9	P07272
Q57468	P22415	P0A6C1	P07276
Q5F882	P22670	P0A6R3	P08046
Q5Y812	P22829	P0A6Z6	P08151
Q746J7	P23511	P0A7C2	P08638
Q7AKF2	P23760	P0A7G6	P09077
O7X0D9	P23772	P0A809	P09631
Õ83TD2	P24781	P0A881	P09651
Q8AAV8	P25490	P0A8J2	P09838
Q8E565	P25502	P0A8U6	P09874
Q8GGH0	P25799	P0A8V6	P09884
Q8NMG3	P27577	P0A988	P09956
Q8YAF1	P28147	P0A9H1	P0CS82
Q933Z0	P28324	P0ABS5	P0CY08
Q95520 Q9CHR1	P28347	POAC51	P0CY10
Q9EZJ8	P29617	POACIO	P10037
Q9EZJ8 Q9HUS3			P10037
	P31266	P0ACJ8	
Q9I1S1	P34707	POACP7	P10276
Q9KQU8	P35680	POACS2	P11308
Q9KWU8	P35869	POACT4	P11387
Q9S166	P36956	P0ADI2	P11473
Q9Z9H6	P38144	POAEE8	P11831
	P38830	P0AEK0	P11938
	P38867	P0AF28	P12689
	P41235	P0AFJ5	P12956
	P42226	P0AFY8	P13051
	P42227	P0AG30	P13297
	P42582	P0AG74	P13393
	P43680	P0AGE0	P13864
	P46531	P0AGK8	P14585
	P47902	P0C1U6	P14653
	P48436	P0CI76	P14736
	P49711	P0DJL7	P14859
	P51608	P0DJO8	P14921
	P52952	P11405	P15036
	P53539	P13920	P15207
	P53762	P13925	P15424
	100702	1 10720	1 10727

P53999	P14294	P15436
P54841		
	P14385	P15806
P55318	P14565	P15919
P56178	P14633	P16236
P61244	P14870	P16455
P70118	P15005	P17255
P70340	P15042	P17542
P70348	P16525	P17676
P70512	P17743	P17679
P83949	P17888	P17789
P84022	P17893	P18113
P87249	P19821	P18858
P97360	P20384	P19419
P97471	P20589	P19544
P98177	P21189	P19793
Q00059	P21338	P19838
Q00403	P21866	P20153
Q00422	P22262	P20226
Q00613	P23478	P20263
Q00653	P23657	P20393
Q00958	P23873	P20823
Q01147	P23874	P21951
O01167	P23909	P21952
Q01543	P23940	P22121
Q01663	P25144	P22415
Q01826	P27709	P22670
Q01020 Q02078	P28630	P22829
Q02070 Q02080	P30014	P23511
Q02548	P31032	P23760
~	P33788	P23772
Q03347		-
Q04206	P33905	P23906
Q04207	P37954	P24781
Q04863	P39075	P25490
Q05195	P40676	P25502
Q06330	P41016	P25799
Q06831	P42371	P26358
Q08050	P43642	P26367
Q08957	P43870	P26368
Q12778	P44558	P27577
Q13148	P44688	P27694
Q13469	P46828	P27695
Q14653	P50187	P28147
Q14863	P50465	P28324
-		
Q14919	P52026	P28347
Q15561	P56255	P28519
Q16254	P56981	P29372
Q16666	P62558	P29549
Q17034	P68261	P29617
Q3UPW2	P70985	P31266
Q58HP3	P71039	P31483
Q5AP80	P72525	P31941
Q60793	P76116	P32657
Q61473	P83847	P32761
Q64249	P84131	P34257
Q6MZP7	P96711	P34707
Q6NT76	P96856	P35680
Q8C6P8	P9WGZ1	P35869
202010	1711041	100007

ISSN 0973-2063 (online) 0973-8894 (print)

Bioinformation 14(6): 315-326 (2018)

Open access

Q8GZB6	P9WII3	P36956
Q8IKH2	P9WJB7	P38144
Q8L7G0	P9WME9	P38830
Q8MXE7	P9WMF8	P38867
Q8NHW3	P9WMH1	P39748
O94702	P9WMH3	P41235
Q94IF5	P9WNV3	P42224
Q91110 O95VR4	P9WPY9	P42226
Q969G2	Q031W6	P42227
-		
Q99551	Q06B24	P42582
Q99626	Q0P6M2	P43246
Q9C932	Q1D4I5	P43680
Q9H3D4	Q2ACK9	P46531
Q9NQV7	Q2FZ56	P47902
Q9NUX5	Q2I6W2	P48436
Q9UHX1	Q32WH4	P49711
Q9UMN6	Q3ZD72	P49916
Q9Y5R6	Q45458	P50534
	Q45488	P50549
	Õ45782	P51608
	Q46731	P52952
	Q46864	P53539
	Q46896	P53762
	-	
	Q46944	P53999
	Q47112	P54098
	Q47152	P54132
	Q47155	P54274
	Q47673	P54841
	Q47PJ0	P55265
	Q4UNB2	P55318
	Q53632	P56178
	Q56215	P60896
	Q57253	P61244
	Q57267	P61823
	Q57468	P61978
	O5F882	P62805
	Q5F9M9	P63159
	Q516E6	P70118
	O5KWC1	P70340
	~	
	Q5L0J3	P70348
	Q5SJ64	P70512
	Q5SJ65	P83949
	Q5SJC4	P84022
	Q5Y812	P87249
	Q72I39	P97360
	Q746J7	P97471
	Q746M7	P98177
	Q7AKF2	Q00059
	Q7CWV1	Q00403
	Q7DD47	Q00422
	Q7MHK3	Q00613
	Q7X0D9	Q00653
	Q816E8	Q00055 Q00958
	Q83TD2	Q00958 Q01147
	-	-
	Q84AF2	Q01167
	Q8AAV8	Q01543
	Q8DPM2	Q01663

Q8E565	Q01826
-	-
Q8EFJ3	Q02078
Q8EIX3	Q02080
Q8EVR5	Q02486
Q8GGH0	Q02548
O8KNP2	Q02880
Q8NMG3	Q03164
Q8R5T9	Q03347
Q8RNV5	Q04049
Q8RNV8	Q04206
-	
Q8RT53	Q04207
Q8YAF1	O04863
Q8Z2A5	Q05195
-	-
Q8ZG78	Q05783
Q928V6	Q06330
	-
Q933Z0	Q06453
Q93PU6	Q06831
Q97FM4	Q07230
	-
Q99U17	Q08050
Q9AC34	Q08874
Q9AFI5	Q08957
-	-
Q9AMH9	Q12778
Q9CHR1	Q13469
Q9EZJ8	O13569
- ,	Q14191
Q9F6L0	-
Q9HUS3	Q14653
O9I0M3	O14863
Q9I1S1	Q14919
-	-
Q9I2N0	Q15109
Q9KEI9	Q15365
Q9KJ88	Q15366
Q9KQU8	Q15554
	-
Q9KVD2	Q15561
Q9KWU8	Q16254
Q9KXR9	Q16531
	-
Q9RPJ3	Q16666
Q9RT63	Q17034
Q9RWH8	O25442
Q9RY80	Q3UPW2
	-
Q9S166	Q4PRK9
Q9WY48	Q4VWW5
Q9WYV0	Q58HP3
Q9X2H9	Q5AP80
Q9X4C9	Q5EAW4
O9XDH5	O5NE14
Q9Z3B4	Q5XJA0
Q9Z9H6	Q60793
Q9ZL26	Q61473
V6F4O0	Õ64249
100 100	~
	Q68E01
	Q6CPM4
	Q6MZP7
	Q6N021
	~
	Q6NS38
	Q6NT76
	Q6ZQJ5
	Q71DI3
	Q/1013

Open access

Q7JQ07 Q7M3K2 Q7T2M9 O7TS98 Q7Z2E3 Q7Z5Q5 Q84KJ5 Q84ZU4 Q86T24 Q8C6L5 Q8C6P8 Q8GZB6 Q8IKH2 Q8L7G0 Q8MXE7 Q8N5Y2 Q8NHW3 Q8SXK5 Q8SYK5 Q8VDF2 Q91VJ1 Q91XB0 Q921F2 Q92383 Q94702 Q94IF5 Q95VR4 Q969G2 Q96LI5 Q96LW4 Q96PU4 Q96T88 Q99551 Q99626 Q9C932 Q9DFY5 Q9GPZ9 Q9H171 Q9H3D4 Q9H9S0 Q9JIW4 Q9JJX7 Q9JLV6 Q9NP87 Q9NQV7 Q9NUW8 Q9NUX5 Q9P016 Q9P0U4 Q9QY24 Q9R002 Q9R1E6 Q9UBT6 Q9UBZ9 Q9UGP5 Q9UH17 Q9UHX1

Open access

Q9UMN6
Q9UNA4
Q9UQ84
Q9UTN9
Q9VD99
Q9VR17
Q9Y253
Q9Y261
Q9Y2M0
Q9Y5R6
Q9YGN6
Q9Z2D7

.