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Abstract: 
The aim of toxicogenomic studies is to optimize the toxic dose levels of chemical compounds (CCs) and their regulated biomarker 
genes. This is also crucial in drug discovery and development. There are popular online computational tools such as ToxDB and 
Toxygates to identify toxicogenomic biomarkers using t-test. However, they are not suitable for the identification of biomarker gene 
regulatory dose of corresponding CCs. Hence, we describe a one-way ANOVA model together with Tukey’s HSD test for the 
identification of toxicogenomic biomarker genes and their influencing CC dose with improved efficiency. Glutathione metabolism 
pathway data analysis shows high and middle dose for acetaminophen, and nitrofurazone as well as high dose for methapyrilene as 
significant toxic CC dose. The corresponding regulated top seven toxicogenomic biomarker genes found in this analysis is Gstp1, Gsr, 
Mgst2, Gclm, G6pd, Gsta5 and Gclc.  
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Background:  
The toxicogenomics is defined as the study of the relationship 
between the structure and activity of the genome (the cellular 
complement of genes) and the adverse biological effects of 
exogenous agents [1]. In the early stage of drug development the 
pharmaceutical companies are interested in evaluating the toxic 
or carcinogenic properties of new drugs including dose toxicity 
[2]. By gene expression fingerprints in response to different dose 
levels of drugs, we can explain about the underlying mechanism 
of toxicity that would be crucial to improve the drug 
development process [3]. Since, gene expression patterns changes 
results to its physiological condition changes [4,5]. On the other 
hand, the main objective of toxicogenomics is to identify more 
reliable molecular predictors or toxicogenomic biomarkers of 
toxicity from the extensive amount of toxicogenomic data. The 
toxicogenomic biomarkers are a set of genes that are regulated by 

the influence of different dose levels of CCs or drugs. 
Identification of these biomarkers that are predictive for toxicity 
or to classify dose of CCs from the large-scale toxicogenomic data 
often suffers from robustness [6,7]. Furthermore, proper 
identification of toxicogenomic biomarkers and their influencing 
dose of CCs/drugs is often depends on the selection of 
appropriate analytical tools. Most of the computational tools of 
toxicogenomic data are designed to identify the toxicogenomic 
biomarkers. But the characteristic of toxicogenomic data is that 
there are subsets biomarker genes which expression patterns are 
correlated over their regulatory dose of CCs [8]. Thus, 
simultaneous identification of biomarker genes and their 
influencing or toxic dose of chemical compounds are important 
in toxicogenomic study.  
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There are some online computational tools for the identification 
of toxicogenomic biomarker genes named ToxDB [9] and 
Toxygates [10]. Among these ToxDB a pathway based significant 
toxicogenomic biomarker gene identification tool for the selected 
chemical compound. But this tool cannot identify the significant 
dose level of CCs that regulate the expression pattern of 
biomarker genes. The other online computational tool toxygates 
can also identify the toxico-genomic biomarker genes using t-test 
and Mann–Whitney U test. Though this tool can rank the 
chemical compounds on the basis of the selected biomarker genes 
it has no statistical or probabilistic basis. Hence, we describe one-
way ANOVA together with tukey’s HSD test (post-hoc test) [11] 
for the identification of toxicogenomic biomarker genes and their 
regulatory or toxic dose of CCs respectively.     
   
Methodology:  
Toxicogenomic Biomarkers and Toxic Dose of CCs: 
Toxicogenomic studies profile transcriptional abundance to 
examine involving multiple dose levels and time points. Usually, 
toxicogenomic microarray experiment are designed in such an 
experimental setup in which gene expression is measured at its 
underlying factors, such as doses, time points or combination 
thereof from the treatment samples. There are also control 
samples concurrently to the treatment samples. The fold change 
gene expression yij data can be computed from the gene 
expression of the treatment group samples and control group 
samples. The step-by-step computational process for the 
identification of toxicogenomic biomarkers and their significant 
regulatory CCs are given in Figure 1. The fold change gene 
expression data can be obtained from the gene expression data of 
the treatment group and control group samples using the 
following formula:  
 
yij = TEij / CEij ---- (1) 
 
Where, yij is the fold change gene expression value of the jth 

sample (replication) under the ith chemical compound-dose 
combination or treatment,  TEij and  CEij are the gene expression 
value of the treatment and control samples respectively of the  jth 
sample under the ith treatment. One-way ANOVA is applied on 
the fold change gene expression data for the identification of 
toxicogenomic biomarker genes. Thereafter, Tukey’s HSD (post-
hoc) test is applied for the identification of the toxicogenomic 
biomarker gene regulatory dose of chemical compounds or 
treatment. 
 
Toxicogenomic Biomarker Genes:     
Before identification of toxic dose of CCs it is necessary to 
identify toxicogenomic biomarker genes. For this purpose we 
have used one-way ANOVA model. Let us consider yij is the 
observed fold change gene expression value of a gene of the jth (i 
= 1, 2, …, r) sample (replication) under the ith  treatment (chemical 
compound-dose combination). The one-way ANOVA model for 
the fold change gene expression value yij can be expressed as 
follows: 
 

yij = µ + αi + εij ---- (2) 
 
Where, µ is the grand mean, αi is the ith treatment effect and εij is 
the random error term εij ~ N (0, σ2). The main objective of the 
above ANOVA model is to test whether all the main effects αi of 
the treatments are significantly different. Under null hypothesis, 
for testing the mentioned statement the F statistic is used. On the 
basis of this statistic, if the null hypothesis becomes rejected (i.e., 
the treatment effects are significantly different) for a gene we 
declare that gene as toxicogenomic biomarker.   
 
Biomarker Gene Regulatory Dose of CCs:  
When the results of ANOVA indicate that the true treatment 
means are likely not all equal. The researcher interested to know 
which treatments are responsible for this difference. This can be 
performed comparing the treatment groups using the post-hoc 
test. There is no theoretical problem arises when comparing only 
two treatment groups. But when the test is performed for 
comparing many pairs of treatment groups at the same time, it 
will inflate the type-I error rate or family-wise error rate. We can 
define the family-wise error rate as the probability that at least 
one error is made on a set of tests or p (at least one error is made). 
The family-wise error is meant to capture the overall situation in 
terms of measuring the likelihood of making a mistake if we 
consider many tests, each with some chance of making their own 
mistake, and focus on how often we make at least one error when 
we do many tests. Nevertheless, there are many different 
statistical methods to perform the pair-wise comparisons; among 
those only the Tukey’s Honestly Significant Difference (Tukey’s 
HSD) method controls the family-wise error rate at your specified 
level (say 0.05 or 0.01) across many numbers of pair-wise 
comparisons. Thus, in this study we have chosen Tukey’s HSD 
method for comparing treatments (compound-dose 
combinations) means to identify toxic or toxicogenomic 
biomarker regulatory dose of CCs. 
 
Results and Discussion: 
The important characteristics of toxicogenomic data are that the 
expression pattern of a subset of genes is correlated across a 
subset of chemical compounds (Afshari et al., 2011). Accordingly, 
in the pathway level gene expression data we assume that a 
subset of treatments alters the expression pattern of a particular 
subset of biomarker genes and the other treatments have no 
influence over the other subset of genes. In the typical 
toxicogenomic experiment there are treatment group and control 
group animal samples and gene expression data from both of the 
samples are collected. Later on, fold change gene expression can 
be computed using the equation (1). Therefore, we have 
simulated fold change gene expression data consisting of 50 
genes and 30 treatments or compound-dose combinations using 
one-way ANOVA model (equation 2) to evaluate the aptness of 
the model in toxicogenomic data analysis. In the simulated data 
we have considered the genes (G1, G2, …, G20) as toxicogenomic 
biomarker genes and high and meddle dose of the compounds 
(C1, C2, …, C5) as the toxic dose or biomarker-influencing dose 
of CCs. For imitating the real life pathway level fold change gene 
expression data we have ordered the biomarker genes with 
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respect to fold change expression value. The numerical order of 
the biomarker genes according to which the fold change gene 
expression data are generated is (G14, G15, G20, G16, G4, G17, 
G10, G8, G3, G18, G5, G7, G12, G13, G9, G19, G6, G1, G11 and 
G2). In this way we have simulated the fold change gene 
expression data 100 times and take their average to use in the 
final analysis. We have analyzed the simulated data using the 
one-way ANOVA and the genes for which the treatment effects 
αi are significantly different are considered as the toxicogenomic 
biomarker genes. The results of the ranked (based on p-value) 
significant biomarker genes are (G14, G15, G20, G16, G4, G17, 
G10, G8, G3, G18, G5, G7, G12, G13, G9, G19, G6, G1, G11, G2 
and G29). It is observed that all the significant toxicogenomic 
biomarker genes are correctly identified according to their 
numerical order except the gene G29 as per the data is simulated. 
The boxplot and barplot along with the lettering obtained from 
Tukey’s HSD test of the treatments are given in Figure 2 and 
Figure 3 respectively for the top four significant biomarker genes 
(G14, G15, G20 and G16). From these figures it is observed that 
the treatments (C1_low-C10_low, C6_medium-C10_medium, and 
C6_high-C10_high) which have no significant influence on the 
expression of the mentioned genes possess the same letter and 
the treatments (C1_high-C5_high and C1_medium-C5_medium) 
which have significant influence on the expression of the these 
genes possess the different letters. From these results it is 
observed that our proposed methods are efficient to discover the 
significant toxicogenomic biomarker genes and their regulatory 
treatments or toxic dose of CCs.  
         
According to Nyström-Persson et al. (2013) acetaminophen, 
methapyrilene and nitrofurazone are the glutathione (a major 
metabolite in detoxification process) depleting (toxic) compounds 
and non-glutathione depleting (non-toxic) compounds are 
erythromycin, gentamicin, glibenclamide, hexachlorobenzene, 
isoniazid and penicillamine. The toxicological effects of each 
compound are visible more clearly at 24-hour time point 
compared with 3 hour, 6 hour and 9 hour. Although Toxygates 
[10] provides six different datasets, in this article we have 
considered only rat/in vivo/liver/single data. For the discovery 
of pathway level toxicogenomic biomarkers and toxic dose of 
chemical compounds (treatments) using the described methods 
we have downloaded and analyzed the fold change gene 
expression data of glutathione metabolism pathway from 
toxygates (http://toxygates.nibiohn.go.jp/toxygates/#columns) 
for the mentioned glutathione affecting and non-glutathione 
affecting compounds along with dose levels (low, medium and 
high). The one-way ANOVA identified significant ranked 
(according to p-value) toxicogenomic biomarker genes are 
(Gstp1, Gsr, Mgst2, Gclm, G6pd, Gsta5, Gclc, Gstm4, Gss, 
LOC100912604/Srm, LOC100360180, Odc1, 
LOC100359539/Rrm2, Gstm1, Gsta2/Gsta5, Gsto1, Oplah, Idh1, 
Anpep, Gstm3, Rrm1, Gstm7, Gsta4, Mgst3, Gstt1, 
Apitd1/Cort/Kif1b/LOC100360180, Mgst1, Nat8, Gpx1, 
RGD1562107, Gstm2, Gpx2, Gpx4, Sms, Hpgds). The identified 
biomarker genes are functionally annotated using the online 
database DAVID [12] and the annotation results are given in 
Table 1. From the table it is observed that out of 35 identified 

toxicogenomic biomarker genes 30 are found statistically 
significant in the glutathione metabolism pathway. Among these 
biomarker genes Gstp1, Gsr, Mgst2 and Gclm are top four 
significant biomarker genes. The boxplot and barplot together 
with lettering produced by Tukey’s HSD test for these biomarker 
genes are depicted in the Figure 4 and Figure 5. In the case of the 
biomarker gene Gstp1 the figures Figure 4(a) and Figure 5(a) 
show that nitrofurazone-high (a) is the most significant toxic 
treatment for regulating the gene Gstp1 and then acetaminophen 
high (b), nitrofurazone_middle (b) and acetaminophen_middle 
(bc). Similarly, for the biomarker gene Gsr Figure 4(b) and Figure 
5(b) represent that nitrofurazone_high (a), acetaminophen_high 
(ab), acetaminophen_middle (ab), methapyrilene_high (bc) and 
nitrofurazone_middle (bcd) are the important significant toxic 
treatments that affect the expression pattern of Gsr. From the 
Figures 4(c), 4(d), 5(c) and 5(d) it is observed that 
acetaminophen_middle (a), nitrofurazone_high (ab), 
acetaminophen_high (ab), methapyrilene_high (abc) and 
nitrofurazone_middle (abcd) affect the expression of the 
biomarker gene Mgst2 significantly and nitrofurazone_high (a), 
acetaminophen_high (a), acetaminophen_middle (a) and 
isoniazid_high (a) affect the expression of biomarker gene Gclm. 
Here it should be mentioned that the letters within parenthesis 
after the treatments represents their significance for altering the 
expression of the respective gene. The results obtained from the 
proposed methods are also consistent from the other findings.     
 

 
Figure 1: Flow chart for the identification of toxicogenomic 
biomarker genes and prediction of toxic doses of CCs. 
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Figure 2: Boxplot for the treatments (chemical compound and dose combinations) along with lettering produced by Tukeys’ HSD test 
for the top four significant biomarker genes in the simulated data. 



	
    
	
  

ISSN 0973-2063 (online) 0973-8894 (print)	
  

Bioinformation 14(7): 369-377 (2018) 	
  
©2018 	
  

	
  

373	
  

 
Figure 3: Barplot for the treatment (chemical compound and dose combination) means along with lettering produced by Tukeys’ HSD 
test for the top four significant biomarker genes in the simulated data. 
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Figure 4: Boxplot for the treatments (chemical compound and dose combinations) along with lettering produced by Tukeys’ HSD test 
for the top four significant biomarker genes in the glutathione metabolism pathway data. 
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Figure 5: Barplot for the treatment (chemical compound and dose combination) means along with lettering produced by Tukeys’ HSD 
test for the top four significant biomarker genes in the glutathione metabolism pathway data. 
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Table 1: Functional annotation of KEGG pathway on the biomarker genes identified by one-way ANOVA for glutathione metabolism 
pathway data.   
Term Count % p-value Genes  
rno00480: Glutathione metabolism 
 

30 88.24  1.21E-64   Anpep, G6pd, Gclm, Gstm7, RGD1562107, Sms, Gstm4, Gstm1,  
Apitd1/Cort/Kif1b/LOC100360180,  
Gpx2, Gstt1, Odc1, Gsta5, Gclc, Gpx4,  
Gsta2/Gsta5, Gpx1, Gsta4,  
LOC100360180, Rrm1, Idh1, Gstm2,  
Mgst3, Gsr, Gss, Gstp1, Mgst1, Mgst2,  
Oplah, Gsto1, Gstm3 

rno00980: Metabolism of xenobiotics by 
cytochrome P450          

15 44.12 7.42E-22     Gstm2, Mgst3, Gstm7, RGD1562107, 
Gstp1, Gstm4, Gstm1, Mgst1, Mgst2,  
Gsto1, Gstt1, Gsta5, Gsta2/Gsta5, Gstm3, Gsta4 

rno00982: Drug metabolism - cytochrome 
P450 

15 44.12 9.22E-22 
 
7.67E-16 

Gstm2, Mgst3, Gstm7, RGD1562107, 
Gstp1, Gstm4, Gstm1, Mgst1, Mgst2,  
Gsto1, Gstt1, Gsta5, Gsta2/Gsta5, Gstm3, Gsta4 

rno05204: Chemical carcinogenesis         15 44.12 3.92E-20 
 
 
 

Gstm2, Mgst3, Gstm7, RGD1562107, 
Gstp1, Gstm4, Gstm1, Mgst1, Mgst2,  
Gsto1, Gstt1, Gsta5, Gsta2/Gsta5, Gstm3, Gsta4 

rno01100: Metabolic pathways      11 32.35 0.0191 
 
 

LOC100360180,  
Apitd1/Cort/Kif1b/LOC100360180,  
Anpep, Rrm1, Idh1, G6pd, Gclm, Odc1,  
Gclc, Sms, Gss, Hpgds 

rno04918: Thyroid hormone synthesis 3 8.82 0.0279 Gpx2, Gsr, Gpx1 
 

rno00590: Arachidonic acid metabolism     3 8.82 0.0385 Gpx2, Gpx1, Hpgds  
rno01130: Biosynthesis of antibiotics 4 11.76 0.0511 LOC100360180,  

Apitd1/Cort/Kif1b/LOC100360180,  
Idh1, G6pd  

rno01200: Carbon metabolism 3 8.82 0.0786 LOC100360180, Apitd1/Cort/Kif1b/LOC100360180,  
Idh1 

 
Conclusion:  
Available online toxicogenomic data analysis tools ToxDB and 
Toxygates are suitable for the identification of biomarker genes 
alone. Hence, we describe a model for the identification 
toxicogenomic biomarker genes and their influencing treatments. 
Glutathione metabolism pathway data analysis shows high and 
middle dose for acetaminophen and nitrofurazone, as well as 
high dose for methapyrilene as significant toxic CC dose. The 
corresponding regulated top seven toxicogenomic biomarker 
genes found in this analysis is Gstp1, Gsr, Mgst2, Gclm, G6pd, 
Gsta5 and Gclc.  
 
Conflict of Interest 
The authors declare no conflict of interests.  
 
References  
[1] Aardema MJ and MacGregor JT.  Mutat Res. 2002, 13:25. 

[PMID: 11804602] 

[2] Uehara T et al. Toxicology and applied pharmacology. 2011, 
797:306. 	
  

[3] Khor TO et al. Pharm Res. 2006, 1659 [PMID: 16858654]  
[4] Hamadeh HK et al. Toxicol Sci. 2002, 219:231. [PMID: 

12011481]  
[5] Fokunang CN et al. African Journal of Pharmacy and 

Pharmacology. 2010, 763:774. 
[6] Yildirimman R et al. Toxicol. Sci. 2011, 278:290. [PMID: 

21873647]  
[7] Hofree M et al. Nat. Methods. 2013, 1108:1115. 	
  
[8] Afshari CA et al. Toxicological Sciences. 2011, 225:237. 

[PMID: 21177775] 
[9] Hardt C et al. Database (Oxford). 2016, 1:6. [PMID: 

27074805]  
[10] Nyström-Persson J et al. Bioinformatics. 2013, 3080:3086. 

[PMID: 24048354]  
[11] Tukey J. Biometrics. 1949, 99: 114. 	
  
[12] Huang da W et al. Nat. Protoc. 2009, 44:57.

 
 

Edited by P Kangueane  
Citation: Hasan et al. Bioinformation 14(7): 369-377 (2018) 

License statement: This is an Open Access article which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly credited. This is distributed under the terms of the Creative Commons Attribution License 

 



	
    
	
  

ISSN 0973-2063 (online) 0973-8894 (print)	
  

Bioinformation 14(7): 369-377 (2018) 	
  
©2018 	
  

	
  

377	
  

 
  

Journal 


