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Abstract: 
Quantitative trait locus (QTL) analysis is a statistical method that links two types of information such as phenotypic data (trait 
measurements) and genotypic data (usually molecular markers). There a number of QTL tools have been developed for gene linkage 
mapping. Standard Interval Mapping (SIM) or Simple Interval Mapping or Interval Mapping (IM), Haley Knott, Extended Haley Knott and 
Multiple Imputation (IMP) method when the single-QTL is unlinked and Composite Interval Mapping (CIM) is designed to map the 
genetic linkage for both linked and unlinked genes in the chromosome. Performance of these methods is measured based on calculated 
LOD score. The QTLs are considered significant above the threshold LOD score 3.0. For backcross-simulated data, the CIM method 
performs significantly in detecting QTLs compare to other SIM mapping methods. CIM detected three QTLs in chromosome 1 and 4 
whereas the other methods were unable to detect any significant marker positions for simulated data. For a real rice dataset, CIM also 
showed performance considerably in detecting marker positions compared to other four interval mapping methods. CIM finally detected 
12 QTL positions while each of the other four SIM methods detected only six positions. 
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Background: 
Phenotypic variations in living creature are observed due to the 
variation of molecular genetic factor that is called DNA or gene or 
biomarker. Most of the phenotypes (traits) in organisms are in 
quantitative in nature [4]. Examples include number of seeds 
produced in per plant to study the evolutionary fitness, blood 
pressure to study the hypertension, milk output in dairy breeding 
etc. [9]. Variation in such quantitative traits is often due to the 
effects of multiple genetic loci and for environmental factors. In 
genetics, a QTL is defined as a region of the genome that is 

associated with an effect on a quantitative trait [1]. A QTL may be a 
single gene or may be cluster of linked genes that affect the trait. 
QTL analysis is specialized techniques that construct the genetic 
linkage maps to locate loci (QTLs) that affect a quantitative trait 
and estimate the effect of QTLs on the trait [11]. QTL analysis 
allows researchers in fields as diverse as agriculture, evolution, and 
medicine to link certain complex phenotypes to specific regions of 
chromosomes. The goal of QTL analysis is to identify the action, 
interaction, number, and precise location of these regions [8]. The 
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basic step for mapping QTL includes organizing a cross between 
two inbred strains differing largely in a quantitative trait: 
segregating offspring are scored both for the trait and for a number 
of genetic markers [2]. A cross between two parental inbred lines 
M1 and M2 is performed to generate an F1 population. The F1 
progeny are all heterozygotes with the same genotype. Usually, the 
segregating progeny are produced by a backcross (B1=F1×parent) or 
an intercross (F2=F1×F1).  
 
Due to modern innovation in molecular biology, it has been easier 
to make fine-scale genetic maps for a large number of organisms by 
defining the genomic positions of a number of genetic markers 
(RFPL, isozymes, RAPDs, AFLP, VNTRs, etc.) and to find a 
comprehensive classification of marker genotypes by means of 
dominant markers [2, 10]. These rapid expansions of associated 
techniques in molecular biology have enabled the plant breeders, 
physiologists, pathologists and other plant scientists to gear up and 
expedite the detailed genetic mapping and analysis of QTLs. 
Thoday first introduced the idea of using two markers to bracket a 
region for testing QTLs [11]. Lander and Botstein carried out a 
similar, but much upgraded, method to use two adjacent markers 
to test the presence of a QTL in the interval by performing a 
Likelihood Ratio Test (LRT) at every position in the interval, which 
is called Standard Interval Mapping (SIM) or simply Interval 
Mapping (IM) method [3]. However, SIM can bias identification 
and estimation of QTLs when multiple QTLs are located in the 
same linkage group [3, 4, 5]. Besides, it is also not effective to use 
only two markers at a time for mapping analysis. To deal with 
these difficulties, QTL mapping combines SIM with the multiple 
marker regression analysis studied by Jasen [6], Zeng [12] and this 
combination is termed as Composite Interval Mapping (CIM). It 
avoids the use of multiple marker intervals to deal with the 
problems of mapping multiple QTL by conditioning a test for a 
QTL on some linked or unlinked markers that diffuse the effects of 
other potential QTLs.  
 
Methodology 
Statistical Approaches for QTL Mapping 
Analysis of variance (ANOVA) is the basic tool for QTL mapping 
which is called Marker Regression Method (MR). However, the 
power of this technique decreases at removal of individuals whose 
genotypes are missing at the markers and when the markers are 
widely spaced [8]. There are also a number of statistical methods to 
overcome this weakness of ANOVA for QTL mapping analysis 
such as Standard Interval Mapping (SIM) based on maximum 
likelihood [3], regression based [4] methods are Haley and Knott 
(HK) , Extended Haley and Knott (eHK), Multiple Imputation 

methods(IMP). The steps of this study have been briefly 
demonstrated in Figure 1. 
 

 
Figure 1: Schematic diagram of this study. 
 
Simple Interval Mapping (SIM) 
Maximum likelihood (ML) and regression based SIM methods are 
the most popular and widely used interval mapping approaches. 
These methods make use of a genetic map of the typed markers and 
like ANOVA, assume the presence of a single QTL. In SIM, each 
locus is considered one at a time and the logarithm of the odds ratio 
is calculated for the model that the given locus is a true QTL. The 
odd ratio is related to the Pearson correlation coefficient between 
the phenotype and the marker genotype for each individual in the 
experimental cross. SIM uses two adjacent markers to test the 
existence of a QTL within the interval by performing a likelihood 
ratio test (LRT) at every position in the interval [3]. In practice, QTL 
effects are treated as either fixed or random [16]. In fixed effects 
QTL model, allelic substitution effects are usually estimated and 
tested, and QTL, variance is calculated from estimated allelic effects 
[16]. In random effects QTL model, the QTL effects and QTL 
variance are directly estimated and tested [3, 16]. Since the 
conditional expectations of the QTL genotype given the flanking 
marker genotype are unknown in MLE based IM model, this QTL 
effect model can be treated as a random effects model (REM) [3]. 
On the other hands, in the HK regression based IM model, the 
conditional expectation of the QTL genotype given the flanking 
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marker genotype is considered as fixed and this model can be 
treated as a fixed effect model (FEM) [17]. 
 

 
Figure 2: LOD scores curves for comparison of Interval Mapping 
(IM), Haley-Knott (HK), Extended Haley-Knott (eHK), Multiple 
Imputation (IMP), and Composite Interval Mapping (CIM) 
evaluated based on backcross simulated data. 
 
Composite Interval Mapping (CIM) 
Conventional methods for the detection of quantitative trait locus 
(QTL) are based on a comparison of single QTL models with a 
model assuming no QTL. For instance, in the SIM method the 
likelihood for a single putative QTL is assessed at each location on 
the genome. However, QTLs located elsewhere on the genome can 
have an interfering effect. Consequently, the power of detection 
may be compromised and the estimation of locations and effects of 
QTLs may be biased [3]. Even non-existing so-called ‘ghost’ QTLs 
may appear [4, 13]. Therefore, it is obvious that multiple QTLs 
could be mapped more efficiently and more accurately by using 
multiple QTL models. One popular approach to handle QTL 
mapping where multiple QTL contribute to a trait is to iteratively 
scan the genome and add know QTL to the regression model as 
QTLs are identified [3]. This method termed as Composite Interval 
Mapping (CIM) determines both the location and effects size of 
QTL more accurately than single-QTL approaches especially in 
small mapping populations where the effect of correlation between 
genotypes in the mapping population may be problematic [3, 18]. 
CIM performs interval mapping using a subset of marker loci as 
covariates. These markers function as proxies for other QTLs to 

increase the resolution of interval mapping by accounting for 
linked QTLs and reducing the residual variation [18]. In CIM 
method, suitable marker loci are selected to serve as covariates [3]. 
 
 
QTL Analysis by SIM and CIM Based on Maximum Likelihood 
Estimators 
 Now let us consider no epistasis (QTL×QTL interactions) between 
QTLs, no intervention (QTL× environmental interactions) in 
crossing over, and only one QTL in the testing interval. A QTL 
mapping data includes two parts yj(j = 1,...,n) for the quantitative 
trait value and Xj(j = 1, ..., n) for the genetic markers and other 
explanatory variables, for example, gender and food practice. 
Where yj is the phenotypic value of the Jth

 individual, Xj is a subset 
of Xj which may contain some chosen markers and other 
explanatory variables. To investigate the existence of a QTL at a 
given position in a marker, we want to test the following statistical 
hyp1othesis. Null Hypothesis: there is no QTL at a given position 
vs alternative hypothesis: there is a QTL at a given position. 
 

  
Figure 3: LOD score curves for comparison of Interval Mapping 
(IM), Haley-Knott (HK), Extended Haley-Knott (eHK), Multiple 
Imputation (IMP), and Composite Interval Mapping (CIM) 
evaluated based on real rice mapping population derived from 
IR64/Azucena. 
 
The principle for QTL mapping is: (a) the Likelihood can be 
calculated for a given set of parameters (particularly QTL effect and 
QTL position) given the observed data on phenotypes and marker 
genotypes. (b) The estimates for the parameters are those where the 
likelihood are highest. (c) A significance threshold can be 
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established by permutation testing. The number and size of 
intervals should be considered in determining the threshold value 
since multiple tests are performed in mapping. The hypothesis is 
usually tested at every position of an interval and for all intervals of 
the genome to produce a continuous likelihood ratio test (LRT) 
statistic profile.  
 
Traditional parametric linkage analysis, commonly known 
“logarithm (10 base)-of-odds” (LOD score) analysis is based on the 
likelihood (odds) ratio. This ratio is the relative probability between 
the probabilities of two alternatives LHA/LH0, where LH0 is the 
likelihood of no linkage under null hypothesis (recombination 
fraction is θ=0.5) and LHA is the likelihood under alternative 
hypothesis of linkage (θ <0.5) developed is a popular statistical tool 
now widely used by plant breeders in genetics for QTL mapping 
[14]. The LOD score however compares the likelihood of obtaining 
the test data if the two loci are actually linked, to the likelihood of 
observing the same data purely by chance. Positive scores indicate 
the presence of linkage and the negative scores imply the less 
likelihood of presence linkage. Computerized LOD score analysis is 
the simple way to analyze complex family lineages in order to 
determine the linkage between a trait and a marker or two markers 
[7].  
 
A LOD score greater than 3.0 is considered evidence for linkage as 
it indicates 1000 to 1 odds that the linkage being observed did not 
occur by chance. On the other hand, a LOD score less than -2.0 is 
considered evidence to exclude linkage [14]. Although it is very 
unlikely that a LOD score 3 would be obtained from a single 
pedigree, the mathematical properties of the test allow data from a 
number of pedigrees to be combined by summing their LOD scores 
[14]. A LOD of 3 translate to a p-value of approximately 0.05, no 
multiple testing correction (e.g., Bonferroni correction) is required 
[14, 15]. 
 
Results and Discussion: 
Simulation Study:   
To calculate the performance of the SIM/IM, HK, eHK and IMP in 
comparison of the CIM approach for QTL analysis, we consider 
backcross population for simulation study. In this comparison, we 
assume only one QTL on a chromosome with 6 equally spaced 
markers, where any two successive marker interval size is 1 cM. 
Marker positions and their genotypes are generated using R/qtl 
open source software [9] (http://www.qrtl.org/). The successive 
marker interval size 1 is considered. To generate the simulated data 
for backcross population we consider the number of individuals 
(nind=30), number of chromosomes (nchr=4) and number of 

markers (nmar=6).The true values for the parameters in the SIM 
model are assumed as a=0.8, µ=0.2. 
 
Determination of the performance of the CIM method in 
comparison of the four methods SIM, HK, eHK is calculated based 
on LOD score. It is observed from the Figure 2 that for four 
chromosomes with six markers in each chromosome, the four 
methods IM, HK, eHK and IMP cannot detect any QTL position by 
any maker in any position of each chromosome whereas the CIM 
method identified three QTL positions. One is by the 4th marker in 
chromosome 2 as well as two positions are detected by the 3rd and 
5th markers corresponding to chromosome number 4 whereas the 
other methods fail to detect any QTLs in each chromosome. 
 
Comparison Analysis Based on Real Data: 
To investigate the performance of the Composite Interval Mapping 
(CIM) in comparison of other four simple interval methods for QTL 
analysis in the scenario of real data, we considered a rice mapping 
population derived from the parent variety of IR64, an irrigated 
indica variety and Azucena, a traditional upland japonica variety [9]. 
The dataset used for QTL analysis consisted of molecular marker 
data of 200 SSR makers from 7 chromosomes. One phenotypic data 
such as plant height is taken into consideration of backcross 
population of 200 recombinant inbred lines (RIL) derived from 
IR64/Azucena [9]. It was however observed from the Figure 3 that 
the QTL mapping tool CIM performs better than the other four 
methods in detecting QTL positions in real dataset. For each 
chromosome except the chromosome 5 and 6, CIM method 
detected QTL positions significantly than the other four interval 
mapping methods. 
 
Conclusion: 
The investigation of this comparative study suggests that the 
Composite Interval Mapping (CIM) performs significantly better 
than the other four Simple Interval Mapping (SIM) methods in 
detecting QTL positions in backcross technique both on simulated 
data and on real dataset. CIM detected three makers in 
chromosome 2 and 4, as well as other four SIM methods were 
unable in detecting QTLs for each of the 4 chromosomes for 
simulated data. In addition, for a real rice data set from backcross 
population, the CIM performs mostly in similar fashion for 
detecting QTLs in different positions in each of the 7 chromosomes. 
CIM were finally able to detect twelve QTLs above the LOD 
threshold 3.0 whereas other SIM methods identified only six 
marker positions. 
 
References: 
[1] Dhingani RM et al. Annals of Plant Science 2015 4(04):1072. 



	
    
	
  

	
  

ISSN 0973-2063 (online) 0973-8894 (print)	
  

Bioinformation 15(2): 90-94 (2019) 

	
  
©Biomedical Informatics (2019) 

	
  

	
  

94	
  

[2] Mollah MNH et al. International Journal of Data Mining and 
Bioinformatics 2010 4:4. 

[3] Lander ES et al. Genetics 1989 121:185. [ PMID:2563713] 
[4] Haley CS et al. Heredity 1992 69:315[ PMID:16718932] 
[5] Jansen RC et al. Theoritical Applied Genetics 1992 85:252. 
[6] Jansen RC. Genetics 1993 135:205 [PMID:8224820] 
[7] https://en.wikipedia.org/wiki/Genetic_linkage#Parametric

_linkage_analysis 
[8] Broman KW et al. Bioinformatics 2003 19:889. 
[9] Guiderdoni E et al. Euphytica 1992 62:219. 
[10] Mollah MNH. International Journal of Biometrics and 

Bioinformatics 2010 4:2 

[11] Thoday JM Heredity 1960 14:35. 
[12] Zeng ZB Proceedings of the National Academy of Sciences 

1993 90:10972.[ PMID: 8248199] 
[13] Martinez et al. Theoretical and Applied Genetics 1992 

85(4):480.[ PMID:24197463] 
[14] Nyhott DR. American Journal of Human Genetics 2000 

6:282.[ PMID:10884360] 
[15] Risch N. American Journal of Human Genetics 2000 48:1058.[ 

PMID:2035526] 
[16] Xu S. Genetics 1998 148:517. [ PMID: 9475760] 
[17] Kao CH. Genetics 2000 156(2):855.[ PMID: 11014831] 
[18] Li H et al. Genetics 2007 175(1):361.[PMID:17110476]

  
Edited by P Kangueane  

Citation: Akond et al. Bioinformation 15(2): 90-94 (2019) 
License statement: This is an Open Access article which permits unrestricted use, distribution, and reproduction in any medium, provided 

the original work is properly credited. This is distributed under the terms of the Creative Commons Attribution License 
 

 

 
  

Journal 
 


