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Abstract:  
Genome-wide association study (GWAS) is a popular approach to investigate relationships between genetic information and diseases. A 
number of associations are tested in a study and the results are often corrected using multiple adjustment methods. It is observed that 
GWAS studies suffer adequate statistical power for reliability. Hence, we document known models for reliability assessment using 
improved statistical power in GWAS analysis. 
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Background: 
Genome-wide association study (GWAS) is a popular approach to 
investigate associations between genetic information and diseases 
[1]. Known literature on GWAS is large (213,610 records) as of June 
2020 in PubMed [2]. There were about 5687 GWAS studies 
(September 2018) submitted to the NHGRI-EBI GWAS Catalog [3]. 
This catalog documented 175,870 associations from 4439 studies 

(February 2020) [4]. The observed data contain the genotype of 
hundreds of thousands of Single Nucleotide Polymorphisms 
(SNPs). We test the association between disease outcomes for each 
SNP one by one. Hence, multiple testing adjustments are critical to 
control false positive results when many tests are conducted in a 
single study [5]. Typical multiple testing procedures include the 
Bonferroni correction with the GWAS threshold of 5x10e-8 towards 
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controlling the False Discovery Rate (FDR). A large proportion of 
the GWAS studies suffer lack of adequate statistical power due to 
large data dimensionality. Therefore, it is of interest to review 
approaches to address ‘lack of statistical power’ in GWAS analysis 
with large sample size.  
 
Large GWAS dataset: 
Data size is critical in GWAS analysis. The per-sample cost of 
genomic studies reduced substantially at a speed much faster than 
Moore’s law [6] due to the advancement in high-throughput 
technologies such as the next generational sequencing [32]. This 
makes it possible to conduct genomic studies using large sample 
size.  A number of such studies have been completed. For example, 
the UK Biobank Data [7] gleaned genomic data with related 
information from over 500,000 volunteers. Large proportion of 
meta-data (derived data) using the UK Biobank Data is available. 
The Electronic Medical Records and Genomics (eMERGE) network 
[8] is a National Human Genome Research Institute– funded 
consortium engaged in the development of methods and best 
practices to connect genomic data to electronic medical records. 
This study collected data for 39 million SNPs from 100,000 
participants.  
 
A number of software tools are available to analyze GWAS data. 
Plink [9] and snpStats [10] are the most popular tools. These tools 
implement SNP-wise (one-by-one) testing followed by multiple 
testing adjustments. Plink is a widely used toolset for GWAS. The 
basic association test is for a disease trait and is based on 
comparing allele frequencies of SNPs between cases and controls. 
Alternative tests are also implemented in Plink. These include the 
Cochran-Armitage trend test, Fisher's exact test, different genetic 
models (dominant, recessive and general), tests for stratified 
samples and a test for a quantitative trait. Multiple testing 
adjustments to control false positive probability are conducted in 
these tests for every SNP.  Popular adjustment options (such as 
Bonferroni, Sidak, and FDR) are also implemented in Plink.   
 
The snpStats is an R package in Bioconductor for GWAS. The 
snpStats can handle both quantitative and qualitative phenotypes. 
It can carry out single SNP tests adjusted for potential perplexing 
by quantitative and qualitative covariates. Tests having several 
SNPs taken together as 'tags' are also supported in these analyses. 
The snpStats package offers options for quality control using Hardy 
Weinberg equilibrium tests and filtering SNPs using minor allele 
frequencies. Similar to Plink, snpStats also offer popular multiple 
testing adjustments options. Plink and snpStats are freely 
downloaded and the detailed instructions of the various functions 
in the programs can be found in the respective user manuals.  
 
Statistical models in GWAS: 
The linkage disequilibrium:  

Improving the statistical power using large sample size is not 
suitable for all genomic studies. This is because of majority of 
studies have enough samples to generate huge data as required. 
Therefore, it is desired to improve the study power using novel 
statistical analysis methods. The development of novel methods is 
gaining momentum over the last decades. Standard analysis 
method tests each SNP separately, but the SNPs are correlated with 
each other. The relationship between SNPs is called Linkage 
Disequilibrium (LD), which provides information for other SNPs 
that are in linkage with each other [11]. Most novel statistical 
models are developed by properly incorporating the LD 
relationship among SNPs to allow the tests use information from 
each other.  
 
The number of parameters in the LD matrix is n(n-1)/2, where n is 
the number of SNPs being investigated. Hence, it is not realistic to 
obtain a precise estimation of LD matrix using moderate amount of 
samples in a genomic study. Hence, all reliable models incorporate 
LD information without clarity clearly. These do not use estimated 
LD matrix as model parameters as described below.  
 
Supervised learning approaches:  
The genomic information is the input data and the disease is the 
outcome in the association study using a supervised machine-
learning model. There are various complex statistical models 
developed to improve the statistical power for SNP detection. We 
consider all of these methods as supervised learning methods, 
which comprises of SNP-set analysis [12，13，14，15], Penalized 
regression approach [16, 17, 18] and Bayesian hierarchical 
regression models [19, 20, 21, 22].  
 
Unsupervised learning approaches:  
Model-based clustering is an unsupervised machine learning 
method, which can be used to group SNPs. The SNPs in the same 
group have similar relationship to the outcome, and could borrow 
information from each other in the GWAS analysis. A recent 
method proposed a one-step model. This simultaneously clusters 
SNP and detects significant SNP with FDR control [23].  
 
The patterns of clusters are specified by the difference in minor 
allele frequencies of SNPs between cases and controls. Thus, the 
pattern is enforced with a special prior distribution. This model-
based clustering have shown more precise controls of FDR and 
higher statistical power in both simulation studies and real data 
analysis [23]. The limitation is that it can only handle case-control 
association studies. 
 
Data splitting approach:   
The other approach is based on data splitting strategy. The data can 
be randomly split into a screening set and a testing set. We use the 
screening set to remove the majority of SNPs with weak signals; 
and then investigate the retained SNPs in the testing set. The test 
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sets only consider a very small subset of SNPs. This leads to fewer 
penalties in the multiple test adjustment on testing set. So, this 
approach is much more powerful than analyzing the original data 
with all SNPs. The results of this type of analysis can be heavily 
affected by which samples are split into the testing set. We use 
resampling approaches to analyze multiple copies of the data with 
different random splits to remove unwanted ‘split’ effect [24, 25]. 
These methods are not popular since they have multiple critical 
disadvantages. First, multiple testing adjustment method is not 
available for controlling false positives in these methods. Second, 
such methods involve multiple tuning parameters whose values 
have to be selected in an ad-hoc manner. 
 
Conclusion: 
GWAS is a popular method to study genome relationship with 
diseases and their linked phenotypes. The adjustment of multiple 
testing is critical to reduce false positives in these studies. It is well 
realized that many GWAS studies suffer statistical power in SNP 
discovery due to high dimensional description of the problem at 
hand. Hence, it is of interest to document known information on 
large studies and known statistical analysis models that are 
pertinent to GWAS. Thus, application of novel statistical analysis 
models on large datasets using high performance computing (HPC) 
infrastructure is highly recommended.  
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