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Abstract 
16S rRNA gene analysis is the most convenient and robust method for microbiome studies. Inaccurate taxonomic assignment of bacterial 
strains could have deleterious effects as all downstream analyses rely heavily on the accurate assessment of microbial taxonomy. The use of 
mock communities to check the reliability of the results has been suggested. However, often the mock communities used in most of the 
studies represent only a small fraction of taxa and are used mostly as validation of sequencing run to estimate sequencing artifacts. 
Moreover, a large number of databases and tools available for classification and taxonomic assignment of the 16S rRNA gene make it 
challenging to select the best-suited method for a particular dataset. In the present study, we used authentic and validly published 16S 
rRNA gene type strain sequences (full length, V3-V4 region) and analyzed them using a widely used QIIME pipeline along with different 
parameters of OTU clustering and QIIME compatible databases. Data Analysis Measures (DAM) revealed a high discrepancy in ratifying 
the taxonomy at different taxonomic hierarchies. Beta diversity analysis showed clear segregation of different DAMs. Limited differences 
were observed in reference data set analysis using partial (V3-V4) and full-length 16S rRNA gene sequences, which signify the reliability of 
partial 16S rRNA gene sequences in microbiome studies. Our analysis also highlights common discrepancies observed at various 
taxonomic levels using various methods and databases. 
 
Keywords: 16S rRNA gene; Genomic Databases; Taxonomic Discrepancy; QIIME. 
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Background: 
Next-Generation Sequencing (NGS) techniques are capable of 
generating high quality, comparable data [1]. Traditional methods 
are left behind as sequencing of 16S rRNA gene amplicons is now a 
well-established robust method for bacterial identification. The 
method has revolutionized the microbiome research as well as the 
field of medicine and pathology. 16S rRNA gene sequencing has 
been used to decipher the human microbiome associated with 
various disorders, including colorectal cancer [2]. Moreover, the 
method has been proven to be quick and reliable in diagnostic 
laboratories for pathogen identification [3,4]. Although 16S rRNA 
gene based analysis remains to be the gold standard, proper 
precautions need to be taken during sequencing, preprocessing of 
data, and subsequent downstream analyses. The selection of 
variable region, choice of method for OTU clustering, selection of 
reference databases, and sequencing platform has been shown to 
play an important role in the assessment of microbial diversity 
[5,6]. Although V3-V4 or only V4 region is used widely by the 
scientific community, the choice of the region has been observed to 
affect community identification [7,8]. Also, it is known that 
sequencing errors with different sequencing platforms could reduce 
the reliability of the analysis [9]. Another limitation is that the 
taxonomic assignment is dependent on the reference database. 
Accuracy and resolution of taxonomic assignments might differ 
depending upon the quality and quantity of reference databases 
[10]. Genomic data for the 16S rRNA gene of bacterial type strains 
are pooled and preserved in several databases like Genomic-based 
16S ribosomal RNA gene Database (GRD), SILVA, Ribosomal 
Database Project (RDP) etc. Different pipelines like Quantitative 
Insights Into Microbial Ecology (QIIME) [11], Mothur [12], 
Metagenomic Rapid Annotations using Subsystems Technology 
(MG-RAST)[13] etc. are used worldwide for high precision and 
quick analysis. Different methods are used to overcome the 
limitations regarding 16S rRNA gene analysis. One of them is the 
use of training datasets, which have an impact on the classification 
and robustness of analysis of big datasets of bacterial 16S rRNA 
gene [14]. Furthermore, the use of mock communities has been 
suggested to check the reliability of the sequencing output. Several 
laboratory specific or commercially made mock microbial 
communities like ‘ATCC Gut microbiome whole cell mix’, ‘ATCC 
Vaginal microbiome whole cell mix’ (Source- 
https://www.atcc.org) have proven to be effective in method 
optimization as well as to achieve transparency across different 
studies [15,16]. However, though mock microbial communities 
serve the purpose of estimating sequencing errors, they mostly 
represent minimal diversity. They thus cannot be used as a 
standard for taxonomic identification by analysis pipeline and 
databases. Thus it is a necessity to have a 16S rRNA gene analysis 

pipeline validated using a standard data set with known taxonomic 
identification. Several earlier studies have compared different 
databases and analysis pipelines like one by Nilakanta et al., which 
reviewed the existing analysis pipelines for genomic data analysis 
and suggested that Mothur and QIIME are the two outstanding 
pipelines due to their comprehensive features and support 
documentation. The limitation of the study was that they did not 
use a unified dataset to compare the performance of pipelines in 
terms of taxonomic assignment [17]. Another study by Erica 
Plummer et al., used a 35 infent fecal samples for comparison of 
three widely used analysis methods QIIME, Mothur, and MG-
RAST, for accuracy in taxonomic assignments using only V3-V5 
hypervariable regions of 16S rRNA gene [18]. In the present study, 
we used authentic and validly published, type strain, full length 
(1200-1500bp) and partial (In silico extracted V3-V4 region) 16S 
rRNA gene sequences (n=5895). These sequences were compared 
against various databases with QIIME pipeline, which incorporate 
various algorithms for quality control, clustering similar sequences, 
assigning taxonomy, calculating diversity measures and 
visualizing. We used 16S rRNA gene sequences of type strains 
obtained from the RDP database as it allows the option to 
download the bulk dataset [19]. Three different databases were 
used for microbiome analysis, namely Greengenes, SILVA, and 
EzTaxon [20] which used for 16S rRNA gene-based microbiome 
studies [21-26]. Although several different analysis pipeline 
alternatives like Dada2, QIIME 2, deblur are currently avalilable, 
we chose QIIME 1 pipeline as it is well accepted by scientific 
community having over 22000 citations and being used globally for 
microbiome analysis [27-36]. 
 
Table 1: Observed number of Operational Taxonomic Units (OTUs) for different 
DAMs and sequence lengths. 

S. no DAMs 
Total OTUs  

(Full Length)  
Total OTUs  
(Partial) 

1 97_d_ez 4486 3609 
2 97_d_gg 4486 3609 
3 97_d_silva 4486 3609 
4 97_c_ez 4789 3752 
5 97_c_gg 4486 3609 
6 97_c_silva 4699 3699 
7 99_d_gg 5650 4733 
8 99_d_silva 5650 4733 
9 99_c_gg 5687 4743 

10 99_c_silva 5643 4661 

 
Materials and Method: 
Analysis of the sample Data:  
Type strain 16S rRNA gene sequences from the RDP website 
(https://rdp.cme.msu.edu/) of full length (length < 1200bp) 16S 
rRNA gene sequences (n=5,895) were downloaded along with their 
seven (species) level taxonomy. Publically available databases viz. 
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SILVA (128 release), Greengenes, and EzTaxon were used for the 
OTU (Operational Taxonomic Unit) clustering and taxonomic 
assignment [37]. In this study, we used the most cited and widely 
used databases only. Full database of 97% and 99% identity 
threshold were downloaded from SILVA, Greengenes, and 
EzTaxon websites. Both 16S rRNA gene sequences, along with the 
corresponding taxonomy, was available in all databases. 
 
Methodology: 
Total 10 different Data Analysis Measures (DAMs) were considered 
for analysis through the pipeline. They were named as 97_d_ez, 
97_d_gg, 97_d_silva, 97_c_ez, 97_c_gg, 97_c_silva, 99_d_gg, 
99_d_silva, 99_c_gg, 99_c_silva (Figure 1). 
 
Selection of data set: 
A total of 5895 full-length sequences of 16S rRNA gene along with 
seven levels of taxonomy were obtained from the RDP official 
website. Only good quality type strain bacterial sequences with the 
sequence length >1200 BP were selected were stored in ‘.fasta’ 
format and used for further analysis. 
 
Generation of Partial (V3-V4 region) from full-length sequences: 
16S rRNA gene sequences were taken from the dataset. 16S rRNA 
gene sequences show high length variability; hence, to extract the 
V3-V4 region from the sequences, fuzznuc (from EMBOSS software 
suite) was used. It extracts the sub-sequence based on PROSITE-

style patterns in nucleotide sequences. The primer set used for 
fuzznuc, CCTACGGGAGGCAGCAG, and GGACTAC 
[ACT][ACG] GGGT [AT] TCTAAT extracted V3-V4 
regions from 91.21% sequences. Fuzznuc failed to extract partial 
sequences from the remaining 8.79% sequences. These sequences 
were then manually trimmed using Mega 7 [38].  

 
Analysis of full length and Partial (V3-V4 region) 16S rRNA gene 
sequences: 
The open-source data analysis pipeline QIIMEv.1.8 was used for 
most of the core analyses. Systematic QIIME analysis protocol for 
analysis included, assignment of valid QIIME labels followed by 
Operational Taxonomic Units (OTUs) clustering with pre-decided 
parameters. Further, representative sequence was selected from 
each OTU and finally taxonomic assignment was done using three 
databases. OTUs were clustered using two approaches. First, using 
the de_novo OTU picking method which detects OTUs without 
comparing the query sequence to any reference. Second, using an 
Closed reference-based clustering approach. Also, two different 
identity thresholds i.e., 97% & 99%, were used for OTUs clustering. 
Figure 2 depicts the flow of methodology used for sequence 
analysis. Taxonomic identification of sequences was made using 
three different databases, in combination with OTU clustering 
method and identity thresholds, and total of ten different DAMs 
were created for analysis. Further diversity analysis was performed 
using OTUs table in ‘.biom’ format. 

 
Table 2: Classification & discrepancy data for family level identification for full-length sequences. 

DAMs Total Unclassified family Not Assigned Taxonomy assigned Classification (%) Match Unmatch Match (%) Discrepancy (%) 
97_d_ez 5895 278 58 5559 94.3 5230 329 94.08 5.92 
97_d_gg 5895 180 11 5704 96.76 5164 540 90.53 9.47 
97_d_silva 5895 166 8 5721 97.05 5542 179 96.87 3.13 
97_c_ez 5895 280 63 5552 94.18 5225 327 94.11 5.89 
97_c_gg 5895 180 11 5704 96.76 5164 540 90.53 9.47 
97_c_silva 5895 164 7 5724 97.1 5545 179 96.87 3.13 
99_d_gg 5895 156 6 5733 97.25 5200 533 90.7 9.3 
99_d_silva 5895 102 4 5789 98.2 5617 172 97.03 2.97 
99_c_gg 5895 156 6 5733 97.25 5200 533 90.7 9.3 
99_c_silva 5895 108 4 5783 98.1 5611 172 97.03 2.97 
              Total discrepancy (%) 6.15 

 
Table 3: Classification & discrepancy data for order level identification for full-length sequences. 

DAMs Total Unclassified order Not Assigned Taxonomy assigned Classification (%) Match Unmatch Match (%) Discrepancy (%) 
97_d_ez 5895 22 58 5815 98.64 5623 192 96.7 3.3 
97_d_gg 5895 26 11 5858 99.37 4112 1746 70.19 29.81 
97_d_silva 5895 54 8 5833 98.95 5771 62 98.94 1.06 
97_c_ez 5895 24 63 5808 98.52 5619 189 96.75 3.25 
97_c_gg 5895 26 11 5858 99.37 4112 1746 70.19 29.81 
97_c_silva 5895 58 7 5830 98.9 5769 61 98.95 1.05 
99_d_gg 5895 24 6 5865 99.49 4116 1749 70.18 29.82 
99_d_silva 5895 11 4 5880 99.75 5814 66 98.88 1.12 
99_c_gg 5895 24 6 5865 99.49 4116 1749 70.18 29.82 
99_c_silva 5895 18 4 5873 99.63 5807 66 98.88 1.12 
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              Total discrepancy (%) 13.02 

 
Table 4: Classification & discrepancy data for class level identification for full-length sequences. 

DAMs Total Unclassified class Not Assigned Taxonomy assigned Classification (%) Match Unmatch Match (%) Discrepancy (%) 
97_d_ez 5895 2 58 5835 98.98 5767 68 98.83 1.17 
97_d_gg 5895 5 11 5879 99.73 5440 439 92.53 7.47 
97_d_silva 5895 7 8 5880 99.75 5838 42 99.29 0.71 
97_c_ez 5895 2 63 5830 98.9 5741 89 98.47 1.53 
97_c_gg 5895 5 11 5879 99.73 5440 439 92.53 7.47 
97_c_silva 5895 11 7 5877 99.69 5836 41 99.3 0.7 
99_d_gg 5895 5 6 5884 99.81 5444 440 92.52 7.48 
99_d_silva 5895 4 4 5887 99.86 5842 45 99.24 0.76 
99_c_gg 5895 5 6 5884 99.81 5444 440 92.52 7.48 
99_c_silva 5895 4 4 5887 99.86 5842 45 99.24 0.76 
              Total discrepancy (%) 3.55 

 
Table 5: Classification & discrepancy data for phylum level identification for full-length sequences. 

DAMs Total Unclassified phylum Not Assigned Taxonomy assigned Classification (%) Match Unmatch Match (%) Discrepancy (%) 
97_d_ez 5895 2 58 5835 98.98 5769 66 98.87 1.13 
97_d_gg 5895 0 11 5884 99.81 5776 108 98.16 1.84 
97_d_silva 5895 6 8 5881 99.76 5868 13 99.78 0.22 
97_c_ez 5895 2 63 5830 98.9 5764 66 98.87 1.13 
97_c_gg 5895 0 11 5884 99.81 5776 108 98.16 1.84 
97_c_silva 5895 10 7 5878 99.71 5866 12 99.8 0.2 
99_d_gg 5895 0 6 5889 99.9 5781 108 98.17 1.83 
99_d_silva 5895 3 4 5888 99.88 5872 16 99.73 0.27 
99_c_gg 5895 0 6 5889 99.9 5781 108 98.17 1.83 
99_c_silva 5895 3 4 5888 99.88 5872 16 99.73 0.27 
              Total discrepancy (%) 1.06 

 
Table 6: Classification & discrepancy data for family level identification for partial sequences. 

DAMs Total Unclassified family Not Assigned Taxonomy assigned Classification (%) Match Unmatch Match (%) Discrepancy (%)  
97_c_ez 5894 13 0 5881 99.78 4960 921 84.34 15.66 
97_c_gg 5894 204 0 5690 96.54 5134 556 90.23 9.77 
97_c_silva 5894 137 0 5757 97.68 5577 180 96.87 3.13 
97_d_ez 5894 14 0 5880 99.76 5267 613 89.57 10.43 
97_d_gg 5894 204 0 5690 96.54 5134 556 90.23 9.77 
97_d_silva 5894 139 0 5755 97.64 5570 185 96.79 3.21 
99_c_gg 5894 169 0 5725 97.13 5190 535 90.66 9.34 
99_c_silva 5894 99 0 5795 98.32 5617 178 96.93 3.07 
99_d_gg 5894 170 0 5724 97.12 5188 536 90.64 9.36 
99_d_silva 5894 96 0 5798 98.37 5609 189 96.74 3.26 
              Total discrepancy (%) 7.7 

 
Table 7: Classification & discrepancy data for order level identification for partial sequences. 

DAMs Total Unclassified order Not Assigned Taxonomy assigned Classification (%) Match Unmatch Match (%) Discrepancy (%)  
97_c_ez 5894 6 0 5888 99.9 5365 523 91.12 8.88 
97_c_gg 5894 37 0 5857 99.37 4106 1751 70.1 29.9 
97_c_silva 5894 32 0 5862 99.46 5805 57 99.03 0.97 
97_d_ez 5894 7 0 5887 99.88 5674 213 96.38 3.62 
97_d_gg 5894 37 0 5857 99.37 4106 1751 70.1 29.9 
97_d_silva 5894 31 0 5863 99.47 5800 63 98.93 1.07 
99_c_gg 5894 27 0 5867 99.54 4112 1755 70.09 29.91 
99_c_silva 5894 12 0 5882 99.8 5823 59 99 1 
99_d_gg 5894 27 0 5867 99.54 4112 1755 70.09 29.91 
99_d_silva 5894 12 0 5882 99.8 5823 59 99 1 
              Total discrepancy (%) 13.62 
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Table 8: Classification & discrepancy data for class level identification for partial sequences. 
DAMs Total Unclassified class Not Assigned Taxonomy assigned Classification (%) Match Unmatch Match (%) Discrepancy (%) 
97_c_ez 5894 5 0 5889 99.92 5489 400 93.21 6.79 
97_c_gg 5894 14 0 5880 99.76 5439 441 92.5 7.5 
97_c_silva 5894 13 0 5881 99.78 5580 301 94.88 5.12 
97_d_ez 5894 6 0 5888 99.9 5798 90 98.47 1.53 
97_d_gg 5894 14 0 5880 99.76 5439 441 92.5 7.5 
97_d_silva 5894 13 0 5881 99.78 5579 302 94.86 5.14 
99_c_gg 5894 8 0 5886 99.86 5722 163 97.21 2.79 
99_c_silva 5894 2 0 5892 99.97 5869 23 99.61 0.39 
99_d_gg 5894 8 0 5886 99.86 5735 151 97.43 2.57 
99_d_silva 5894 2 0 5892 99.97 5869 23 99.61 0.39 
              Total discrepancy (%) 3.97 

 
Table 9: Classification & discrepancy data for phylum level identification for partial sequences. 

DAMs Total Unclassified phylum Not Assigned Taxonomy assigned Classification (%) Match Unmatch Match (%) Discrepancy (%) 
97_c_ez 5894 5 0 5889 99.92 5513 376 93.62 6.38 
97_c_gg 5894 9 0 5885 99.85 5776 109 98.15 1.85 
97_c_silva 5894 13 0 5881 99.78 5864 17 99.71 0.29 
97_d_ez 5894 6 0 5888 99.9 5822 66 98.88 1.12 
97_d_gg 5894 9 0 5885 99.85 5776 109 98.15 1.85 
97_d_silva 5894 13 0 5881 99.78 5865 516 99.73 0.27 
99_c_gg 5894 3 0 5891 99.95 5782 109 98.15 1.85 
99_c_silva 5894 2 0 5892 99.97 5877 15 99.75 0.25 
99_d_gg 5894 3 0 5891 99.95 5782 109 98.15 1.85 
99_d_silva 5894 2 0 5892 99.97 5877 15 99.75 0.25 
              Total discrepancy (%) 1.6 

 
Results 
Total OTUs: 
The sample dataset used in this study was obtained from an 
authentic database, and the sample size, i.e., the number of 16S 
rRNA gene sequences was 5,895. Also, they were approximately 
full length (>1200bp) type strain sequences. Considering the 
parameters mentioned above, it was expected that number of OTUs 
in the DAMs would be similar to the sample data set. However, it 
was observed that even with the 97% and 99% identity limits in 
OTUs picking, the number of OTUs obtained in each variation is 
significantly different. The total number of OTUs detected in 
different DAMs is represented in Table 1. Total numbers of OTUs 
obtained from each DAM were compared; which were less than the 
Operational Taxonomic Units (number of sequences) in data set 
(Figure 3). Comparative analysis showed that higher numbers of 
OTUs were obtained for a 99% identity threshold compared to the 
97% identity threshold for the respective combination of the 
database used. The actual numbers of sequences used for the 
analysis were 5895. When clustered with the de novo clustering 
method with 97% & 99% sequence identity thresholds, 23.9% & 
4.15% of the total sequences failed to form separate clusters, 
respectively. In the case of reference-based OTU clustering, 
EzTaxon, Greengenes, and SILVA databases showed 18.72%, 23.9%, 
and 20.29% true negatives, respectively, at 97% identity threshold. 
Whereas at 99% identity threshold value, the percentage of true 

negatives was reduced to 3.53% and 4.28% for Greengenes and 
SILVA database, respectively. Partial sequences had a higher 
amount of true negatives. The de novo OTU clustering method 
showed 38.77% and 19.72% true negatives for 97% & 99% identity 
threshold, respectively. Reference-based OTU clustering, EzTaxon, 
Greengenes, and SILVA databases showed 36.53%, 38.77% and 
37.25% true negatives respectively at 97% identity threshold. 
However, 19.55% & 20.93% true negatives were obtained with a 
99% identity threshold for Greengenes and SILVA database, 
respectively. Highest numbers of OTUs 5,687 (96.47%) were 
obtained from 99_c_gg and lowest number of OTUs 4,486 (76.09%) 
from 97_d_ez, 97_d_gg, 97_d_silva & 97_c_gg for full-length 
sequences. However in case of partial sequences, highest number 
OTUs obtained were 4743 (80.45%) form 99_c_gg however lowest 
number of OTUs obtained were 3609 (61.22%) from 97_d_ez, 
97_d_gg, 97_d_silva & 97_c_gg (Table 1). 
 
Overall Classification: 
In the original data set, the numbers of different taxa were 1, 29, 56, 
126, 277, 1422, and 5895 at the kingdom, phylum, class, order, 
family, genus, and species, respectively. However, in comparison to 
the original data set, relatively fewer taxa were detected using 
different DAMs. Also, differences were observed among the DAMs 
in the total number of taxa detected at different taxonomic levels 
(Figure 4(a) and Figure 4(b)). The graph shows the taxonomic 
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assignments performed with the help of QIIME for the data set 
using different databases. Original seven-level taxonomy for the 
data set consisted of 29 phyla. Although taxonomic assignment at 
the phylum level was observed for most of the sequences using all 
three databases, not all 30 phyla were observed. Classification by 
EzTaxon database gave rise to 27 phyla, whereas Greengenes and 
SILVA databases could classify 26 phyla each for the data set. A 
total of 1422 genera were present in the data set. SILVA and 
EzTaxon databases assigned more than 1000 genera in each DAM, 
but the third database Greengenes could assign less than 1000 
genera for its all 4 DAMs. It was observed that no database could 
successfully assign species-level taxonomy for all the sequences. 
One possible explanation can be the presence of incomplete 
taxonomy data present in databases. Furthermore, it was observed 
that different taxonomic assignment is observed for the same 
sequences using different pipelines. Thus the same data was 
checked for the total number of discrepancies present in taxonomic 
assignments in between different DAMs. Here taxonomy from the 
original data set was used as a standard control, and discrepancies 
by each DAM and databases were compared with reference data 
set. 
 
Table 10: List of some of the misclassified organisms. Taxonomy assigned by different 
databases is different from their actual taxonomy in the reference data set. 

ID Actual Classification ID Misclassification 
53 Pediococcus_acidilactici 53 Pediococcus_lolii 
509 Kluyvera_ascorbata 509 Kluyvera_cryocrescens 
565 Corynebacterium_aurimucosum 565 Corynebacterium_lubricantis 
616 Carnobacteriaceae_bacterium 616 Pisciglobus_halotolerans 
764 Salmonella_bongori 764 Salmonella_enterica 
790 Moraxella_bovoculi 790 Moraxella_canis 
809 Pantoea_brenneri 809 Pantoea_stewartii 
811 Bifidobacterium_breve 811 Bifidobacterium_longum 
945 Porphyromonas_cansulci 945 Porphyromonas_crevioricanis 
947 Streptosporangium_canum 947 Streptosporangium_oxazolinicum 
1020 Pseudomonas_cissicola 1020 Xanthomonas_citri 
1316 Pantoea_conspicua 1316 Pantoea_stewartii 
1369 Arthrobacter_creatinolyticus 1369 Glutamicibacter_creatinolyticus 
2222 Mycobacterium_goodii 2222 Mycobacterium_wolinskyi 
2316 Haemophilus_haemoglobinophilus 2316 Pasteurella_multocida 

 
Discrepancies: 
Incorrect taxonomic classification of a particular type strain 
sequence using DAMs is referred to as discrepancy in the 
taxonomic assignment. High amount of discrepancy was observed 
in the identification of the data set (Figure 5). Percentage 
discrepancy decreases with higher taxonomy hierarchy. Also, a 
significantly high amount of discrepancy was observed in the data 
after analysis through QIIME. A total of 18.78% and 10.53% 
discrepancy was observed in the identification of type strain data 
set for the full length and partial sequences, respectively. A 

discrepancy in the taxonomic assignment was calculated at all 
taxonomic hierarchies for both full length (Figure 6) and partial 
sequences (Figure 7). The detailed DAM vise information about 
classification and discrepancy data for different taxonomic level 
identifications is represented for full length sequences (Table 2 to 
Table 5) and partial sequences (Table 6 to Table 9).  
 
Table 11: List of top 48 genera in global microbiome studies, which were considered 
for discrepancy analysis. 

Genera analyzed 
1 Acidaminococcus 25 Enterococcus 
2 Acinetobacter 26 Faecalibacterium 
3 Actinomyces 27 Flavobacterium 
4 Adlercreutzia 28 Fusobacterium 
5 Akkermansia 29 Haemophilus 
6 Anaerostipes 30 Klebsiella 
7 Bacillus 31 Lachnospira 
8 Bacteroides 32 Lactobacillus 
9 Bifidobacterium 33 Megamonas 

10 Bilophila 34 Megasphaera 
11 Blautia 35 Mitsuokella 
12 Bulleidia 36 Odoribacter 
13 Butyricimonas 37 Parabacteroides 
14 Butyrivibrio 38 Paraprevotella 
15 Catenibacterium 39 Plesiomonas 
16 Citrobacter 40 Prevotella 
17 Clostridium 41 Pseudomonas 
18 Collinsella 42 Roseburia 
19 Coprobacillus 43 Ruminococcus 
20 Coprococcus 44 Slackia 
21 Delftia 45 Streptococcus 
22 Desulfovibrio 46 Succinivibrio 
23 Dialister 47 Sutterella 
24 Dorea 48 Veillonella 

 
Beta Diversity: 
Principle Component Analysis (PCA) graphs were plotted for 
understanding the variation between different samples. A 
significant variation was observed between databases and standard 
datasets. Each of the three databases formed their separate clusters 
in plots for full length as well as partial sequences. Clusters 
included their variations like 97% and 99% identity thresholds 
along with de novo and closed reference-based OTU picking 
method. The original dataset stands alone separately, and some 
variation exists between data set and clusters. In the case of both 
full length and partial sequences, SILVA database assigned 
taxonomy appears closest to the dataset as compared to Greengenes 
and EzTaxon (Figure 8). 
 
Misclassification: 
Percentage misclassification was varying depending upon the 
method of picking OTU, identity threshold as well as databases 
used for the identification. Misclassification was observed using 
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different DAMs at genus level (Table 10). It was observed that 
results for identification vary with different pipelines. The average 
misclassification values at genus level were 17.94%. For different 
DAMs observed misclassification values were 8.67 (97_d_ez), 31.56 
(97_d_gg), 28.26 (97_d_silva), 8.49 (97_c_ez), 31.58 (97_c_gg), 25.12 
(97_c_silva), 13.1 (99_d_gg), 10.05 (99_d_silva), 12.58 (99_c_gg) and 
10.03 (99_c_silva). A total of 48 genera belonging to 26 families were 
analyzed separately for taxonomic assignment discrepancies. These 
48 genera were the most abundant and important in global 
microbiome studies. Higher misclassification observed in these 
genera and respective families is evidence of the necessity for 
correction and up-gradation of databases and software used for 
bacterial identification using 16S rRNA gene sequencing. Table 11 
and Table 12 provide with a list of genera and families used for the 
top 48 discrepancy analysis, respectively. Table 13 depicts 

percentage misclassification observed at genus and family level for 
major human microbiome taxa using different DAMs (Table 13). 
 
Table 12: List of families taken into consideration for discrepancy analysis. Top 48 
genera in global microbiome studies belong to these 26 families. 

Families analyzed 
1 Actinomycetaceae 14 Fusobacteriaceae 
2 Alcaligenaceae 15 Lachnospiraceae 
3 Bacillaceae 16 Lactobacillaceae 
4 Bacteroidaceae 17 Moraxellaceae 
5 Bifidobacteriaceae 18 Pasteurellaceae 
6 Clostridiaceae 19 Porphyromonadaceae 
7 Comamonadaceae 20 Prevotellaceae 
8 Coriobacteriaceae 21 Pseudomonadaceae 
9 Desulfovibrionaceae 22 Ruminococcaceae 

10 Enterobacteriaceae 23 Streptococcaceae 
11 Enterococcaceae 24 Succinivibrionaceae 
12 Erysipelotrichaceae 25 Veillonellaceae 
13 Flavobacteriaceae 26 Verrucomicrobiaceae 

 

 
Figure 1: Creation of dataset for analysis. 
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Figure 2: Workflow for steps used in the QIIME pipeline. 
 

 
Figure 3: Total number of OTUs observed compared with dataset OTUs. 
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Figure 4: Number of taxonomic assignments obtained for full-length sequences at each taxonomic hierarchy for (a) Full-length sequence 
and (b) Partial sequence. 
 

 
Figure 5: Sequences getting taxonomic assignment as compared with the total number of sequences for (a) species level and (b) genus level 
for full-length sequences, (c) species level, and (d) genus level for Partial sequences. 
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Figure 6: Sequences getting taxonomic assignment at family level (a), Order level (b), Class level (c) and Phylum level (d) compared with 
total number of sequences for full-length sequences. 
 

 
Figure 7: Sequences getting taxonomic assignment at family level (a), Order level (b), Class level (c) and Phylum level (d) compared with 
total number of sequences for V3-V4 partial sequences. 
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Figure 8: Beta diversity analysis comparing variation in taxonomic assignment by DAMs with reference data set for (a) Full-length 
sequences and (b) Partial sequences. 
 
Table 13: Percentage Misclassification or no classification in top 48 genera in Human Microbiome using different methods of analysis. 

Sequence Length Method 97_d_ez 97_d_gg 97_d_silva 97_c_ez 97_c_gg 97_c_silva 99_d_gg 99_d_silva 99_c_gg 99_c_silva 
Genus 97.87 20.05 21.3 94.29 20.05 21.09 14.31 8.49 12.27 9.32 

Full Length Family 11.17 6.52 3.99 11.44 6.52 3.97 6.4 3.52 6.4 3.48 
Genus 9.7 11.88 11.38 9.67 11.88 11.29 14.11 3.85 14.09 6.08 

Partial Family 10.1 6.5 3.95 10.12 6.5 3.79 6.57 3.22 6.57 3.22 

 
Discussion: 
Advances in sequencing technologies have reduced the sequencing 
cost. Also an increase in computational power has facilitated an 
overwhelming number of microbiome studies in the diverse 
ecological niches. A primary goal of all microbiome studies is to 
identify the bacteria that constitute these complex communities. A 
valid and reliable method is a must for understanding these 
complex communities. The purpose of this study was to validate 
widely used databases like EzTaxon, SILVA, Greengenes, and data 
analysis pipeline QIIME. Since NGS is becoming cost-effective 
nowadays, researchers prefer sequencing 16S rRNA gene-based 

amplicon sequencing for the identification of isolates. The data 
obtained from sequencing is compared with standard sequences 
from various databases. In this study, we present results of 
discrepancies in taxonomic assignment occurred by different 
databases using the same set of sequences and analyzed through 
QIIME. Detailed literature review was performed for the selection 
of QIIME 1.8 as analysis pipeline. We narrowed down to QIIME 1 
as it is one of the most used and well-accepted analysis pipeline for 
microbiome analysis having over 22000 citations. QIIME 1 provides 
with the OTU selection thresholds of 97%, which is the gold 
standard identity threshold for 16S rRNA gene analysis for several 
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years. Also, We included 99% identity threshold for comparison 
purpose. We used data from the RDP database, which provides 
with the option of bulk data download and is scientifically well-
accepted database for the genomic data. Using both full-length 
sequences (>1200 bp) and partial sequences (V3-V4) of type strain 
data eliminates chances of bias of selecting only a specific region of 
16S rRNA gene and analyzing certain specific sequence data. One 
of the earlier studies has majorly focused on analyzing data using 
seven variable regions but has used four mock samples, amplified 
using the metagenomic kit and a single database [39]. Two other 
studies used specific variable regions in the 16S rRNA gene for 
identification [40,41]. Study by Whelan et al. focused on, 
developing new pipeline which was based on combinations of 
present computational tools for better reproducibility and 
visualization of amplicon data analysis [42]. Report by Allali et al. 
has compared chicken cecum microbiome analysis using different 
sequencing platforms as well as analysis pipelines proving that the 
sequencing platform as well as analysis parameters impact 
microbiome data structure [43]. Carlos et al. spoke about various 
issues in 16S rRNA gene based analysis regarding assembly, use of 
short reads and classification inaccuracies [44]. However, there is 
limited material available validating existing pipelines and tools. To 
our knowledge, no comparable studies have used full-length 16S 
rRNA gene sequences analyzed through QIIME with two different 
OTU picking methods, both with two different identity threshold 
(97% & 99%) and also using three different widely used databases 
for the taxonomic assignment. Initially, we have taken 5895 
sequences in our data set and used them for OTU picking in QIIME 
using de novo and closed reference-based methods. Our first 
results show a number of OTUs obtained after each method. The 
initial table displays results of OTUs picked by each DAM in 
comparison with the dataset. Pick_otus.py command classifies 
closely related individuals in a single cluster. Sequences that show 
lesser identity than a provided threshold (97% & 99%) are clustered 
separately as next OTUs. Although the lowest identity threshold 
provided by us was 97%, the highest numbers of OTUs observed 
were 5687 for identity threshold of 99%. This suggests that the 
actual percentage identity between several type strain sequences is 
more than 97%, thus supporting the newly accepted identity 
threshold of 98.5% for species designation. This could result in 
failure of depicting the actual diversity of the sample system. Our 
aim was to compare two different 16S rRNA gene identity values as 
several microbiome researchers across the globe use earlier 97% 
identity threshold as a gold standard [24,25,36,45,46]. In addition to 
this, different numbers of assignments were observed at each 
taxonomic level. The original data set contained 29 phyla, but no 
DAM showed an assignment of 29 phyla. The highest number of 
phyla assigned by any DAM was 27, and some identified only 26 

phyla. The rest of the sequences either remained unclassified or got 
misclassified into those identified phyla. Also, during taxonomic 
assignments using different databases, many of the OTUs remained 
‘unclassified’ at various taxonomic levels. Tables 2-9 provide with a 
number of OTUs observed to remain unclassified at each taxonomic 
level for full length as well as partial sequences. The reason behind 
this is the unavailability of taxonomy for the sequence at that 
particular taxonomic level in respective databases. Such 
‘Unclassified’ incidences were seen to reduce as we went to higher 
taxonomic levels, but such occurrences could indicate 
incompleteness of databases at various taxonomic levels. Such 
incompleteness of databases might fail to provide the taxonomic 
identification till species level. Another important observation was 
noted about misclassification and discrepancy in taxonomic 
assignment. Taxonomy assigned for the sequence by QIIME 
pipeline with a specific database was completely different from the 
original taxonomy in the data set. Varying discrepancies were 
observed in assigned taxonomy at each taxonomic level and in each 
of the 10 DAMs. A total of 18.78% discrepancy in assigned 
taxonomy was observed at the genus level, which is a high amount 
of discrepancy. Genus level classification is mentioned here because 
genus and species are two taxonomic hierarchies that we generally 
use for referring any organism. The percentage of discrepancy was 
seen to reduce with higher taxonomic hierarchy. Table 10 enlists 
some of the misclassified organisms. Each database showed a 
different percentage of discrepancy in the taxonomic assignment 
possibly due to different time intervals of database update or the 
methodological limitations of the analysis measures. The highest 
discrepancy was observed as 31.58% for 97_c_gg & lowest 
discrepancy was observed as 4.37% for 97_d_ez at the genus level. 
Such misclassification i.e., assignment of different taxonomies for 
the same sequences by different databases, makes it difficult to 
choose a suitable database for analysis purposes. Generally, only 
single pipeline and database is used for any analysis and 
identification purpose by any researcher or sequencing facilities or 
even pathology labs [3] for identification of the pathogen. Such 
improper identifications could hamper analysis reliability. In recent 
years, the field of microbiome research has moved ahead from just 
exploring the microbial diversity in the sample to interventional 
and translational research. Hence, it is crucial to use correct 
bacterial strains. The use of wrong bacterial strains can be 
deleterious. One of the studies clearly states the misclassification 
issue of genus Acinetobacter with phylogenomic approach. It has 
now been established that the genus is poorly classified, especially 
for closely related species like Acinetobacter calcoaceticus and 
Acinetobacter baumannii complex (Acb complex) [47]. Such 
inaccurate assignment in taxonomic classifier might possibly lead 
to community member misclassification and ultimately misleading 
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conclusions and possibly treatment. In this study, we explored 
most widely used 16S rRNA gene databases and QIIME pipeline 
with various parameters. A similar approach can be used to 
benchmark any new pipeline or database before analyzing actual 
data. The reference set allows us to cross-validate taxonomic 
assignments. In the last decade, a lot of microbiome data is 
available for various ecosystems, like soil, water, plant, animal, and 
human. This has enabled us to get a fair idea about the taxonomic 
groups expected in the ecosystem. A combination of a particular 
pipeline and database can be selected based on the accuracy in 
assignment taxa expected in the ecosystem. This study gives a fair 
idea about the limitation of using short reads for taxonomic 
assignment as well as about the list of important taxa that can be 
misclassified using a particular analysis pipeline. 
 
Conclusions: 
99% identity threshold is better for OTU clustering for full length as 
well as partial length sequences than conventional 97% identity 
threshold. A total 18.78% and 10.53% discrepancy was observed at 
the genus level for the full length and partial sequences, 
respectively, which is a high amount of discrepancy. The 
discrepancy at each taxonomic level can be calculated, and the 
quality of data present in the database can be decided. Beta 
diversity analysis shows an overall distance of analyzed data from 
the reference data set. 99_c_silva shows most identity with 
reference data set as compared to other DAMs. 99_c_silva means 
SILVA database with a identity threshold of 99% and close 
reference-based OTU picking method. It is crucial to select 
databases, pipelines, and algorithms very carefully considering 
discrepancies in taxonomic assignment and selection should be 
done based on the necessity of the study. Also, databases should be 
validated, and discrepancies should be corrected in successive 
updates of databases.  
 
Limitations: 
Study is restricted to QIIME analysis pipeline and one can always 
use similar approach to benchmark any other globally used 
analysis pipeline like MOTHUR, MG-RAST, etc. Furthermore, 
despite using both 97% & 99% identity thresholds and De novo & 
close reference-based OTU picking approaches; study focused on 
only a single method i.e. uclust for OTU clustering. 
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