
	
    
	
  

	
  

ISSN 0973-2063 (online) 0973-8894 (print)	
  

Bioinformation 17(6): 628-636 (2021) 

	
  
©Biomedical Informatics (2021) 

	
  

	
  

628	
  

www.bioinformation.net 

 Volume 17(6) Research Article 

Molecular docking analysis of Clostridium perfringens 
beta toxin model with potential inhibitors from the 
ZINC database 
 

Amit Kumar Solanki, Abhishek Acharya, Himani Kaushik, Bharti Bhatia & Lalit C. Garg* 
 
Gene Regulation Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi – 110067, India; Dr. Lalit C. Garg - Tel.: 
+91 11 26703652; Fax: +91 11 26742125. E-mail: lalit@nii.ac.in; Corresponding author: 
 
Contacts for authors: Amit Solanki: solankiamit19@gmail.com; Abhishek Acharya: abhi117acharya@gmail.com; Himani Kaushik: 
himanikaush@gmail.com; Bharti Bhatia: bhartibhatia2007@gmail.com; Lalit C. Garg (Corresponding author): lalit@nii.ac.in; 
lalitcgarg@gmail.com  
 
Received May 18, 2021; Revised May 21, 2021; Accepted June 3, 2021, Published June 30, 2021 

DOI: 10.6026/97320630017628 
Declaration on official E-mail: 
The corresponding author declares that official e-mail from their institution is not available for all authors 
 
Declaration on Publication Ethics: 
The authors state that they adhere with COPE guidelines on publishing ethics as described elsewhere at https://publicationethics.org/. 
The authors also undertake that they are not associated with any other third party (governmental or non-governmental agencies) linking 
with any form of unethical issues connecting to this publication. The authors also declare that they are not withholding any information 
that is misleading to the publisher in regard to this article. 
 
Abstract: 
Beta toxin from Clostridium perfringens after being secreted in gut is capable of causing necrotic enteritis in humans and several other animal 
species and does not respond to routinely used antibiotics. Therefore, there is a need to design an effective inhibitor for the Clostridium 
perfringens beta toxin (CPB) using cutting edge drug discovery technologies. Hence, potential CPB inhibitors were identified using 
computer aided screening of compounds from the ZINC database. Further, we document the molecular docking analysis of Clostridium 
perfringens beta toxin model (that revealed 4 binding pockets, A-D) with the identified potential inhibitors. We show that ZINC291192 [N-
[(1-methylindol-3-yl) methyl eneamino]-7,10-dioxabicyclo[4.4.0]deca-2,4,11-triene-8-carboxamide] has optimal binding features with 
calculated binding energy of -10.38 kcal/mol and inhibition constant of 24.76 nM for further consideration.  
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Background: 
Clostridium perfringens responsible for necrotizing enteritis is an 
opportunistic pathogen possessing more than 16 various toxins and 

are capable of causing wide range of histotoxicity and intestinal 
infections [1]. C. perfringens type C secretes alpha toxin (CPA) and 
beta toxin (CPB) along with perfringolysin O (PFO), beta2 toxin 
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(CPB2) and/or enterotoxin (CPE) [2]. It is known that CPB is both 
required and sufficient for causing virulence [2,3]. CPB is a 34,861 
Da protein comprising of 309 amino acids and shares sequence 
similarity with Ħ-pore-forming toxin family (delta-toxin, Net-B 
toxin, alpha-toxin, leukocidin & gamma-toxin) [4]. The released 
toxin by itself is capable of causing toxinosis even if the bacteria 
have died or have cleared from host. Primary treatments for type C 
infection include administration of broad-spectrum antibiotics such 
as penicillin, erythromycin and nitrofurantoin [5], but are of little 
value after onset of symptoms, which are mainly due to toxin and 
not bacteria. CPB is active as monomer and readily forms 
oligomeric complex on primary porcine and human endothelial 
cells, as well as monocytes in vitro [6]. It has also been shown that 
methyl-Ħ-cyclodextrin (MĦCD) can reduce the binding of the toxin 
to lipid rafts and swelling induced by the toxin via encapsulating 
the membrane cholesterol in vitro [7]. However, treatment of the 
cell membranes with nystatin shows that the toxin does not directly 
interact with cholesterol [8]. The inhibitory effect of MĦCD or 
cholesterol oxidase thus appears to be due to changes in the 
properties of lipid rafts that occur when cholesterol is removed 
from lipid rafts by MĦCD and cholesterol oxidase [6,9]. Homology 
modelled structures of the CPB and its receptor P2X7 have been 
used to identify the amino acid residues involved in their 
interaction [10]. With no other reports on potential drugs that 
directly inactivate CPB, it is of interest to identify and document 
potential inhibitors interacting with the CPB by molecular docking 
analysis of the homology modelled CPB structure.  
 
Methodology 
Homology modeling of CPB: 
The structure for CPB was modeled on the structure of Clostridium 
perfringens delta-toxin [PDB ID: 2YGT]. Automated modeling 
method was employed for this purpose, using the SWISS-MODEL 
web interface [11]. Herein, the SWISS-MODEL template library 
(SMTL version 2016-05-26, PDB release 2016-05-20) was searched 
with BLAST [12] and HHBlits [13] for evolutionary related 
structures matching the target sequence. A total of 33 templates 
were found. Models were built based on the target-template 
alignment using Promod-II [14]. The global and per-residue model 
quality has been assessed using the QMEAN scoring function [15]. 
For improved performance, weights of the individual QMEAN 
terms have been trained specifically for SWISS-MODEL. The best 
model obtained from the server was further refined using the 
3Drefine web-server [16]. 3DRefine uses a protocol consisting of 
two steps; a) optimization of hydrogen bonds network in the 
starting model, b) energy minimization. The first step involves a 
search for polar hydrogen atoms and their most favorable positions 
taking into account the hydrogen bonds formed with neighboring 

atoms based on the most probable protonation state for each amino 
acid. The output models of 3Drefine were analyzed for stereo-
chemical properties using PROCHECK [17]; best quality model was 
chosen as the final model. Protein structures and models were 
visualized and rendered for figures using VMD [18]. 
 
Identification of binding pockets 
For identifying putative pockets in CPB, we used a consensus 
method by employing four binding pocket prediction algorithms, 
namely; CASTp, Fpocket, GHECOM and POCASA. Outputs from 
these algorithms were qualitatively analyzed to identify the most 
probable binding pockets. CASTp uses a weighted Delauney-
triangulation method and the alpha-shape theory for shape 
measurements. Thereafter, it measures the area and volume of each 
pocket using analytical approaches, and also estimates the number 
of cavity opening, area of openings etc., in both Solvent Accessible 
Surface and Molecular Surface [19]. Similarly, Fpocket is also based 
on the concept of alpha spheres and Voronoi Tessellation for 
detecting alpha spheres – spheres that contact 4 atoms and do not 
contain internal atoms. These alpha spheres are clustered and 
analyzed to detect probable binding pockets in the protein [20]. 
GHECOM is a grid-based pocket detecting algorithm that utilizes 
the theory of mathematical morphology to define multi scale 
molecular volumes i.e. pockets defined using probes of different 
sizes [21]. POCASA implements an algorithm called Roll – a grid 
based pocket search method that uses a rolling spherical probe for 
pocket search. The pockets are subsequently ranked based on the 
cumulative distance of each pocket point from the pocket surface – 
highest scoring pockets are considered as ligand binding sites [22]. 
 
Virtual screening of drug library: 
Virtual screening was performed on CPB using a randomly selected 
subset of 5000 drug-like compounds obtained from the ZINC 
database [23]. Model for the CPB was prepared for virtual 
screening using AutoDockTools software. Particularly, polar 
hydrogens were added to the structure while non-polar hydrogens 
were merged with the aliphatic carbon atom, and appropriate 
partial charges were added. Similarly, the structures for each of the 
5000 ligands were also prepared by adding Gasteiger-Marsili 
partial charges [24]. For virtual screening, a flexible docking 
approach was used wherein the receptor was represented as 
flexible in specific regions. Similarly, the ligands were also 
prepared so as to keep the rotatable bonds free during the docking 
process; such an approach allows for better sampling of the 
conformational space during the course of docking and has been 
shown to predict the ligand binding modes with greater accuracy. 
A large grid-box of size 100x126x126 grid-points was selected for 
specifying the docking search-space. The docking was performed 
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using the Lamarckian Genetic Algorithm (GA-LS) implemented in 
AutoDock4.2 [25]. For each ligand, 20 runs of GA-LS were 
performed, each run starting with a population size of 200 and 
iterated for a number of generations until the maximum generation 
number (27000) or energy evaluation was reached (2000000), 
whichever is attained first. The best ligand compounds were 
selected based on their predicted binding-affinity values. The top 5 
ligands were analyzed for their interactions to CPB using Chimera 
[26]. 
 

Analysis of surface accessible cavities: 
The protein structure was analyzed for buried cavities and channels 
using the CAVER algorithm as implemented in the software 
CAVER Analyst [27]. CAVER constructs a Voronoi map for a given 
structure consisting of vertices and edges. The tunnels and pathway 
through the protein are calculated by finding the shortest costs path 
between all surface vertices using Dijkstra’s algorithm, and the final 
pathways are constructed by extending the paths to find a single 
low cost path to surface vertices. 

Table 1: Top 10 ligands with predicted binding energies (kcal/mol) identified by molecular docking  
S. No. Ligand Name ZINC ID Binding Free Energy (kcal/mol) 

1. N-[(1-methylindol-3-yl)methyleneamino]-7,10-dioxabicyclo[4.4.0]deca-2,4,11-triene-8-carboxamide 291192 -10.38 
2. N-[3-(6-methyl-1,3-benzoxazol-2-yl)phenyl]benzamide 352940 -9.85 
3. N-(cyclohexylcarbonyl)-N'-(2-hydroxy-5-methylphenyl)thiourea 342085 -9.76 
4. (8-methyl-6-oxo-1,2,3a,4,5,6-hexahydro-3H-3,10b-diazaacephenanthrylen-3-yl)acetonitrile 186468 -9.74 
5. 2-[(3-cyano-6-methyl-7,8-dihydro-5H-[1,6]naphthyridin-2-yl)sulfanyl]-N-(1-phenylethyl)acetamide 658740 -9.71 
6. NA 340372 -9.67 
7. (8-methyl-6-oxo-1,2,3a,4,5,6-hexahydro-3H-3,10b-diazaacephenanthrylen-3-yl)acetonitrile 186467 -9.63 
8. 6-cyclohexyl-3-(3-methylphenyl)[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole 531162 -9.62 
9. N'-(9H-fluoren-9-ylidene)-2-{2-nitrophenoxy}propanohydrazide 657642 -9.53 

10. 1,2,3,4,5,8,9,10,11,12-decahydro-14H-cyclohepta[4',5']thieno[2',3':4,5]pyrimido[1,2-a]azepin-14-one 130331 -9.33 

 

 
Figure 1: Homology model of Clostridium perfringens beta toxin (CPB). A model of CPB is depicted in ribbon representation. The lower panel 
is the surface representation of the toxin. 
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Figure 2: Prediction of putative binding pockets in CPB. Surface representation of CPB with the predicted top scoring pockets based on a 
consensus approach (see Materials and Methods). The predicted pockets named alphabetically in the order of decreasing pocket surface 
area (in brackets; Å2 units), are depicted as colored CPK points. 
 
Results and Discussion: 
The structure of CPB from Clostridium perfringens is not available in 
the PDB database. Therefore, homology-modeling approach was 
employed to model the CPB structure. The model was generated by 
SWISS-MODEL webserver using the C. perfringens delta-toxin 
structure as template with a sequence identity of ~44%. The model 
generated from the server was further refined and subjected to 
stereo-chemical quality checks using PROCHECK; the model 
quality was found to be good with 99.6 % of the residues in allowed 
region and proper main-chain and side-chain parameters. 
However, the sequence coverage between the query and the 
template was around 86%; the first 27 residues of CPB could not be 
modeled. Modeling of the CPB using another program - Phyre2, 
[28] suggested that this N-terminal 27 residue region exists as an 
alpha-helical structure (extending from residue 5 to 27) that is 
connected to the rest of the protein via a 10-residue flexible linker 
region. The rest of the protein model predicted by Phyre2 (residues 
28-336) was similar to the model obtained from SWISS-MODEL 
webserver with rmsd value of 0.636 Å. However, the N-terminal 
region was modeled at a very low confidence (<1%). Notably, in 
previous studies on CPB as well as delta-toxin, the first 27 residues 
segment has been suggested to act as a signal peptide directing the 
extracellular secretion of the toxin [29]. Therefore, the partial model 
(without the N-terminal segment) as generated using SWISS-

MODEL was selected for further structural investigations; the 
predicted model is depicted in Figure 1.  
 
The model of CPB is predominantly composed of beta-strands 
(arranged into anti-parallel beta-sheets) and loop regions. An 
interesting feature of the Ħ-pore forming family of toxins is the 
presence of extensive loops within the structure; this points to an 
inherent flexibility in the loop regions and a wider conformational 
space. Specifically, in CPB the residues from 215 to 263 exist as a 
long coil region, which is stabilized by interaction with the 
underlying beta sheet. Such intrinsically flexible regions generally 
have implications to the functions of the protein. Pocket prediction 
methods were applied for the identification of such binding pockets 
in CPB. The output of four different pocket prediction methods to 
identify regions that are most likely to bind to a ligand was then 
analyzed. The top predicted pockets in CPB are illustrated in Figure 
2. Out of these, Pocket A has the largest surface area of 970 Å2, 
followed by Pocket B with an area of 909 Å2. Pocket A is lined by 
part of the long loop segment (positions 215-263). A smaller pocket-
D [730Å2] also lies in this region, lined by the loop residues. 
 
We therefore selected a large grid-box that incorporated the regions 
including the predicted pockets A, B and D (see Materials and 
Methods for details). The loop residues present within this grid-box 
were treated as flexible to account for protein flexibility while 
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docking the ligands. The ligands used for docking were also treated 
as flexible by keeping all the rotatable bonds as free. The details of 
the top 10 docking results selected based on the predicted binding 
energies, are tabulated in Table 1. Analysis of the docking poses of 
the top 10 ligands revealed that out of the 10 ligands 8 were docked 
in the region around Pocket A (Figure 3A). Structural analysis of 
these 8 docked conformations revealed that these ligands are 
significantly buried in the protein, accommodated within a cavity 
in the interior of the protein. Further analysis of CPB structure for 
surface accessible interior cavities and tunnels uncovered presence 
of cavities in the interior of the protein, especially in the region 
encompassing the long loop (Figure 3B). It is likely that the 

movement of the flexible loops in this region (highlighted in Figure 
3C) allow accessibility to the buried cavities within the protein. Our 
docking protocol which treated these residues of the loops as 
flexible allowed us to simulate this flexibility and enabled 
identification of ligand binding modes that otherwise would be 
missed in a rigid body treatment. Apart from the 8 ligands that 
were docked in the same region of CPB, two other ligands (ligands 
5 and 9 in Table 1) were docked to the peripheral region of CPB 
consisting of loops between Ħ-strands (Ħ6-Ħ7, Ħ15-Ħ16) and loop 
residues 240-245 (part of the long loop 215-263). 

 

 
Figure 3: Docking studies and tunnel calculations on CPB. (A) Docking poses for the top 10 ligands predicted to bind CPB. The inset shows 
a zoomed view of Pocket A, shows a cluster of the top predicted binders; 8 out to the top 10 compounds are present in this cluster. (B) A 
model of CPB depicting the tunnels computed by CAVER, a program for computation of internal tunnels and cavities. (C) The top-ranking 
channel (depicted in red color in 3B) passed through the region between loops 215-229 and 254-263.  
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Figure 4: Binding pose for the top-scoring compound obtained from docking studies. (A) The top scoring compound - ZINC291192 [N-[(1-
methylindol-3-yl)methyleneamino]-7,10-dioxabicyclo[4.4.0]deca-2,4,11-triene-8-carboxamide] (depicted in CPK representation) bound to  
CPB. (B) The residues interacting with the top scoring compound (in ball and stick; cyan color). H-bond between the compound and 
Asn264 is depicted as red dotted line.    
 
The best scoring binding-model of the top inhibitor ZINC291192 
[N-[(1-methylindol-3-yl)methyleneamino]-7,10-
dioxabicyclo[4.4.0]deca-2,4,11-triene-8-carboxamide] is depicted 
in Figure 4A. This inhibitor was predicted to have a binding 
energy of -10.38 kcal/mol that corresponds to an estimated 
dissociation constant of 2.4 x 10-8 M. The residues that make up 
the pocket that binds to the inhibitor are mostly composed of 
hydrophobic residues indicating that the inhibitor is largely 
involved in hydrophobic and van der Waals forces. Besides, the 
inhibitor forms a hydrogen bond interaction with the backbone 
of Asn264 residue. These interactions together with a significant 
desolvation energy, due to the transfer of the inhibitor 
compound from solvent to the hydrophobic pocket, results in the 
high estimated binding energy.   
 
Thus, in the present study we have identified a potential 
inhibitor for CPB secreted by C. perfringens type C. Since the C. 

perfringens type C is not affected by antibiotic treatments and is 
capable of causing necrotizing enteritis independently, it is 
necessary to identify inhibitors of CPB for which a structure 
based in silico screening of compounds was performed using 
ZINC database. The best hit compound ZINC291192 had a 
predicted binding energy of -10.38 kcal/mol corresponding to an 
estimated dissociation constant of 2.4x 10-8 M, which can be 
studied further for clinical applications. For a more thorough 
investigation, the top 5 molecules binding at the aforementioned 
region (corresponding to pocket A) can also be tested for their 
inhibitory potential; the top 5 inhibitors have an estimated 
dissociation constant ranging from 2.4 x 10-8  to 8.1 x 10-8 M 
which indicates a significant binding affinity for these ligands for 
further consideration in validation. 
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Conclusion: 
We report a potential inhibitor for beta toxin from Clostridium 
perfringens from ZINC database with predicted binding features 
such as binding energy of -10.38 kcal/mol corresponding to an 
estimated dissociation constant of 2.4 x 10-8 M for further 
consideration in drug discovery. 
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