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Abstract: 
Epithelial ovarian cancer (EOC) is categorized into four major histological subtypes such as clear cell carcinoma (CCC), endometrioid 
carcinoma (EC), mucinous carcinoma (MC), and serous carcinoma (SC). Heterogeneity of the EOC leads to different clinical outcomes 
of the disease, although all the subtypes are originated from the same layer of tissue. Therefore, it is of interest to identify the common 
candidate genes, miRNA and their interaction network in four the subtypes of EOC. A comparative gene expression analysis identified 
248 common differentially expressed genes (DEGs) in the four subtypes of EOC. Identified common DEGs were found to be enriched 
in cancer specific pathways. A protein-protein interaction (PPI) network of the common DEGs were constructed, and subsequent 
module and survival analyses identified seven key candidate genes (CCNB1, CENPM, CEP55, RACGAP1, TPX2, UBE2C, and ZWINT). 
We also documented 10 key candidate miRNAs (hsa-mir-16-5p, hsa-mir-23b-3p, hsa-mir-34a-5p, hsa-mir-103a-3p, hsa-mir-107, hsa-
mir-124-3p, hsa-mir-129-2-3p, hsa-mir-147a, hsa-mir-205-5p, and hsa-mir-195-5p) linked to the candidate genes. These derived data 
find application in the understanding of EOC. 
 
Keywords: Epithelial ovarian cancer, Differential gene expression, Biomarkers, Gene ontology, Survival analysis, miRNA-mRNA 
network 

 
Background:  
Ovarian cancer is the eighth most common carcinoma that is 
associated with a high mortality rate among women worldwide 
[1]. Ovarian cancer is mostly detected at the advanced stage 
because of its asymptomatic growth and lack of reliable screening 
techniques. It was reported that up to 90% of all ovarian cancer 
have an epithelial origin [2]. Epithelial ovarian cancer (EOC) is 
further categorized into four histological subtypes specifically 
clear cell carcinoma, endometrioid, mucinous, and serous 
carcinomas. Each of these subtypes is associated with different 
genetic factors, molecular events, and mRNA expression profiles 
that make each subtype a distinct disease, although each subtype 

have epithelial origin [3]. Protein CA125 (cancer antigen 125) is a 
well-known serum biomarker used for the detection of ovarian 
cancer. However, its expression level is not uniform across all. 
Thus, CA125 is not a highly specific diagnostic marker for 
ovarian cancer. Patients with different subtypes respond in a 
different way to the same treatment and also have different 
prognoses due to its heterogeneity, which complicates ovarian 
cancer treatment. Therefore, identifying new reliable biomarkers 
common in subtypes of EOC are required for the improved 
treatment of EOC. Microarray experiments are producing 
massive quantities of gene expression and other functional 
genomic data, which give us a deeper systems-level insight of a 
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disease. Protein-protein interaction (PPI) network analysis is a 
powerful approach for finding the candidate genes because it is 
used to represent, compute and model intracellular interactions 
to gain insights into the molecular architecture of any complex 
process [4-5]. Substantial efforts have been made to discover 
diagnostic and prognostic biomarkers of serous subtype using 
gene expression data [6-7]. However, a limited number of studies 
were conducted on the comparative gene expression analysis of 
the subtypes of EOC. One such study performed by Madore et al. 
defines the molecular characteristics of serous and endometrioid 
carcinomas to address the problems with the current 
histopathological classification methods [8]. Another study, 
Pamula-Pilat et al. analyzed transcriptomic profiles of three 
histological subtypes specifically clear cell carcinoma, 
endometrioma and serous carcinomas to identify molecular 
differences that explained the different responses of these 
subtypes against chemotherapy [9]. In our recent work, we 

identified 13 hub genes that were functionally interacted among 
the four major subtypes [10]. Therefore, it is of interest to identify 
and document the common miRNAs, candidate genes and their 
interaction network across the four subtypes of EOC. 
 
Materials and Methods: 
Data retrieval: 
This study includes 333 microarray samples from eight gene 
expression datasets (GSE6008, GSE44104, GSE63885, GSE14407, 
GSE26712, GSE29450, GSE18520, and GSE38666) that belongs to 
two Affymetrix platforms namely GPL750 and GPL96. All the 
datasets were retrieved from Gene Expression Omnibus 
(https://www.ncbi.nlm.nih.gov/). Of the total 333 samples, 39 
samples belong to clear cell carcinoma, 60 belong to 
endometrioma, 22 belong to mucinous carcinoma, 154 belong to 
serous carcinoma, and 58 belong to normal samples (Table 1). A 
flowchart of this study is given in Figure 1. 

 
Table 1: Summary of the microarray datasets used in this study 
Platform Data Sample type 

Normal Serous Endometrial Mucinous Clear Reference GSE6008 
4 41 37 13 8 [11] 

G
PL

96
 

GSE26712 10 x x x x [12] 
GSE44104 
 

x 28 11 9 12 [13] 

GSE63885 x 73 12 x 9 [14] 
GSE29450 10 x x x 10 [15] 
GSE14407 12 12 x x x [16] 
GSE18520 10 x x x x [17] 
GSE38666 12 x x x x [18] 

G
PL

57
0 

 Total 58 153 61 22 45  

 

 
Figure 1. Flowchart of the methodology implemented in this study. 
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Data processing: 
Raw microarray data contains different sources of noise such as 
due to the experimental handling, efficacy, and efficiency of the 
probe, noisy signal due to labelling efficiency, between slide 
variation and other factors. Hence, it is necessary to pre-process 
the raw data before the expression measures that can be used for 
further analysis. The raw data were standardized and 
transformed into expression value using the affy package of 
Bioconductor. Pre-processing of the raw data from the same 
platform was done together. The robust multi-array average 
(RMA) algorithm was used for pre-processing of the microarray 
data that included background signal correction, data 
normalization, and probe summarization. For the batch 
correction process limma package was used. 
 
Differential expression analysis: 
Limma (Linear models for microarray data) package was used for 
the identification of DEGs in different subtypes of EOC by 
comparing it with the normal ovarian surface epithelium 
samples. Further, the false-discovery rate arising due to multiple 
hypothesis testing was minimized through Benjamini-Hochberg’s 
method. We considered absolute logarithmic fold change 
(|log2fc|)>1 and adjusted p-value (adj) <0.05 for the 
identification of DEGs. We used Venn diagram 
(http://bioinformatics.psb.ugent.be/webtools/Venn/) to 
identify overlapped/common DEGs among four subtypes of 
EOC. 
 
Functional enrichment analysis of DEGs: 
Gene ontology (GO) and KEGG pathway enrichment analysis of 
the common DEGs in four subtypes of EOC were conducted 
using the DAVID online tool (Sherman al., 2007). GO terms 
consist of three categories that included biological process (BP), 
molecular function (MF), and cellular component (CC). 
Significance testing of the matched terms was performed and a p-
value<0.05 was considered to select the significantly enriched 
terms. 
 
 

Construction of PPI network and module analysis: 
A PPI network of the identified common DEGs was constructed 
by the STRING database (https://string-db.org/) with an 
interaction score > 0.7. Subsequently, potential module from the 
PPI network was identified by the Cytoscape plugin Molecular 
Complex Detection (MCODE). Further, based on the highest 
degree of connectivity, the top 10 genes were identified. We also 
performed GO analysis to gain insights into the biological 
functions of the genes in the largest module.  
 
Survival analysis and validation of module genes: 
Progression-free survival (PFS) analysis of the genes in the largest 
module was performed using Kaplan–Meier plotter online tool 
(http://kmplot.com/analysis/) to assess the effect of genes on 
the progression-free survival of ovarian cancer patients. We 
considered the criteria of log-rank P-value<0.05 and hazard ratio 
(HR) with a confidence interval 95% for the identification of 
significant genes. Genes that were significantly associated with 
the progression-free survival of the EOC patients were referred to 
as candidate genes.  
Next, to investigate the genetic alteration information of these 
significant genes, we used cBioCancer Genomics Portal 
(https://www.cbioportal.org/). Further, the expression level of 
these significant genes was verified by GEPIA2 web-based tool 
using a threshold of |logfc|>1 and padj<0.01 
(http://gepia2.cancer-pku.cn/#index).  
 
miRNA–candidate gene network: 
MicroRNAs (miRNAs) can regulate nearly all-biological 
processes and have demonstrated that their dysregulation is 
implicated with human cancer. Thus, in addition to the candidate 
genes, we also aim to find out the regulatory miRNAs that target 
all the candidate genes. It is well known that a single miRNA can 
target many genes and also multiple miRNAs can regulate a 
single gene. The miRNet database (https://www.mirnet.ca/) is 
used for the identification of candidate genes targeting miRNAs 
and the construction of miRNA-candidate gene interaction 
network (i.e., the interactions of miRNAs with their target genes 
are called miRNA-candidate gene network). 

 

 
Figure2:  Volcano plots represent the proportion of genes found to be differentially expressed in each subtype of EOC. The X-axis 
represents the log2 transformed of fold change ratios and Y-axis is the log10 transformed adjusted p-value. Green dots: down regulated 
DEGs, Red dots: up regulated DEGs based on |logfc|>1 and p<0.05. 
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Table 2: Common pathways involved in clear cell, endometroid, mucinous and serous  carcinomas 
Term Count P_value 

hsa01230: Biosynthesis of amino acids 8 1.64E-04 
 

hsa00010: Glycolysis / Gluconeogenesis 6 4.70E-03 
 

hsa04114: Oocyte meiosis 7  9.63E-03 
 

hsa04145: Phagosome 8 1.15E-02  
hsa04110: Cell cycle 7 1.60E-02 
hsa00350: Tyrosine metabolism 4 1.93E-02 
hsa04015: Rap1 signaling pathway 9 2.18E-02 
hsa00982: Drug metabolism - cytochrome P450 5 2.51E-02 
hsa01200: Carbon metabolism 6 3.78E-02 
hsa05200: Pathways in cancer 12 4.72E-02 
hsa04151: PI3K-Akt signaling pathway 11 4.68E-02 

 
Table 3: List of the identified miRNA that targeted the candidate genes 
miRNA_ID Accession ID Mature_Sequence 
hsa-mir-16-5p MIMAT0000069 UAGCAGCACGUAAAUAUUGGCG 
hsa-mir-103a-3p MIMAT0000101 AGCUUCUUUACAGUGCUGCCUUG 
hsa-mir-107 MIMAT0000104 AGCAGCAUUGUACAGGGCUAUCA 
hsa-mir-23b-3p MIMAT0000418 AUCACAUUGCCAGGGAUUACCAC 
hsa-mir-34a-5p MIMAT0000255 UGGCAGUGUCUUAGCUGGUUGU 
hsa-mir-124-3p MIMAT0000422 UAAGGCACGCGGUGAAUGCCAA 
hsa-mir-129-2-3p MIMAT0004605 CUUUUUGCGGUCUGGGCUUG 
hsa-mir-147a MIMAT0000251 GUGUGUGGAAAUGCUUCUGC 
hsa-miR-195-5p MIMAT0000461 UAGCAGCACAGAAAUAUUGGC 
hsa-mir-205-5p MIMAT0000266 UCCUUCAUUCCACCGGAGUCUG 

 

 
Figure 3: Venn diagram shows 248 common DEGs among serous carcinoma (SC), endometrioid carcinoma (EC), mucinous carcinoma 
(MC), and clear cell carcinoma (CCC). 
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Figure 4: (Top panel) Top 10 significantly enriched biological process of the common DEGs. The X-axis represents gene counts and Y-
axis represents biological process respectively. (Middle Panel) Top 10 significantly enriched molecular function of the common DEGs. 
The X-axis represents gene counts and Y-axis represents molecular function respectively. (Bottom Panel) Top 10 significantly enriched 
cellular component of the common DEGs. The X-axis represents gene counts and Y-axis represents cellular component respectively. 
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Figure 5: (Top panel) PPI network of common DEGs in the four subtypes of EOC. Cluster of purple color nodes represents largest 
module. (Bottom panel) Represent largest module in PPI network. Yellow nodes represent the top 10 hubs genes. 
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Figure 6: Progression free survival (PFS) analysis of module genes in EOC patients. Survival curves are based on the low and high 
expression of the module genes in EOC patients. Log-rank P < 0.05 was considered statistically significant. 
 

 
Figure 7: The genetic alterations occur in candidate genes are shown through a visual summary across a set of ovarian serous 
cystadenocarcinoma samples (data from TCGA, PanCancer Atlas). 
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Figure 8: Expression level of the candidate genes in EOC tissues and normal tissues. 
 
Results: 
Identification of DEGs in the four subtypes of EOC:  
Differential gene expression analysis was carried out to find the 
genes that were differentially expressed between cancerous and 
normal conditions. Differentially expressed genes (DEGs) were 
identified based on the criteria of i) absolute logarithmic fold 
change (|log2fc|)>1 and ii) adjusted p-value (padj)<0.05. The 
proportion of genes that were differentially expressed in each 
subtype is represented using the volcano plot (Figure 2). Further, 
differential gene expression analysis revealed a total of 753 genes 
(478 genes upregulated and 275 genes downregulated) were 
differentially expressed in clear cell carcinoma. Similarly, 663 
genes (405 upregulated and 266 downregulated) in endometrioid, 
768 genes (upregulated 480 and downregulated 278) in 
mucinous, and 672 genes (upregulated 427 and downregulated 
245) in serous carcinoma were differentially expressed. Finally, 
we identified a total of 248 DEGs (upregulated 128 and 
downregulated 120) that are common in all four subtypes of 

EOC. These 248 genes are called “common DEGs”. In Figure 3, a 
Venn diagram shows common/overlapped DEGs among the four 
subtypes of EOC. 
 
Function and pathway enrichment analysis of DEGs: 
GO and pathway enrichment analyses were conducted to identify 
the biological significance of common DEGs. Results of GO 
analysis exhibited that extracellular matrix organization, 
angiogenesis, membrane organization, liver development, 
cellular response to vascular endothelial growth factor stimulus 
were the top five significant biological processes of the common 
DEGs (Figure 4A). Similarly, heparin binding, cadherin binding 
involved in cell-cell adhesion, protein kinase, protein binding and 
protein domain specific binding were the top five significant 
molecular functions, and extracellular exome, extracellular 
matrix, extracellular space, and proteinaceous extracellular 
matrix were the top five significant cellular component terms 
(Figures 4B & C). Pathway enrichment analysis identified 
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biosynthesis of amino acids, glycolysis/gluconeogenesis, oocyte 
meiosis, phagosome, cell cycle, tyrosine metabolism, RAP1 
signaling pathway, drug metabolism-cytochrome P450, carbon 

metabolism, PI3K-AKT signaling pathway, and pathways in 
cancer are common pathways that were shared among the four 
subtypes of EOC (Table 2). 

 

 
Figure 9: miRNA-candidate gene interaction network. Candidate genes are presented in red circles and miRNAs are shown in blue and 
Yellow Square. Yellow squares represented the miRNAs that target all the candidate genes. 
 
PPI network construction and module identification: 
 STRING database was used for the identification of PPIs among 
the common DEGs and retrieved a PPI network of 137 nodes 
(genes) and 264 edges (interactions) at the confidence score > 0.7 
and P-value <1.0e-16 (PPI enrichment). The PPI network was 
exported in the Cytoscape and island nodes were removed. 
Finally, the PPI network contained 103 nodes with 238 
interactions (Figure 5A). Further, significant module was 
identified for a deeper understanding of the cellular organization, 
processes, and functions via the MCODE plugin. Only one 
module (Module 1: nodes = 15, edges=101, MCODE score = 
14.429) was identified based on the criteria that a module should 
has at least 5 nodes and network density ≥0.50. Besides module 
analysis, we carried out hub gene analysis and identified the top 
10 genes with the highest degree (i.e., top 10 hub genes) belonged 
to Module 1. Thus, we considered Module 1 (the largest module) 
for further downstream analysis (Figure 5B). Additionally, GO 
enrichment analysis was carried out to gain insights into the 
distinct functions of the genes in the largest module. It was found 
that genes in the Module 1 were mostly involved in cell cycle 
processes like mitotic spindle midzone assembly, mitotic spindle 
elongation and positive regulation of ubiquitin-protein ligase 
activity.  
 

Survival analysis, genetic alteration and expression validation 
of candidate genes: 
The prognostic information of the genes (15 genes) in the largest 
module was retrieved by the Kaplan-Meier plotter database. A 
total seven genes were found to be significantly associated with 
the PFS of EOC patients. It has been identified that decreased 
expression of CCNB1, CEP55, RACGAP1, TPX2, UBE2C, and 
ZWINT and high expression of CENPM associated with better 
PFS in EOC patients as shown in Figure 6. Subsequently, the 
genetic alteration information of the seven candidate genes was 
evaluated by using cBioPortal (https://www.cbioportal.org/) as 
illustrated in Figure 7. TPX2 was the most frequently altered gene 
(7 %) as compared to other candidate genes. Further analysis 
found that among all types of mutations such as amplification, 
deep deletion, fusion, inframe mutation, missense mutation, and 
truncating mutation, the percentage of amplification is the 
highest. Furthermore, the expression validation of the candidate 
genes shows that their expression levels are high in EOC as 
compared to normal tissues shows in Figure 8. Results of 
expression analysis obtained from the GEPIA2 database are in 
accordance with the analyzed GEO datasets, which validate that 
the expression level of the candidate genes is high in tumor 
tissues. 
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miRNA–candidate gene network: 
Construction of miRNA-candidate gene network identified an 
interaction network consisting of seven candidate genes and 477 
miRNAs with 731 interactions (Figure 9). Based on the degree of 
connectivity, CCNB1 (degree =169) is the top most candidate 
gene targeted by 169 miRNAs followed by RACGAP1 (degree 
=153), ZWINT (degree = 122), and CEP55 (degree = 101), CENPM 
(degree = 87), TPX2 (degree = 55), UBE2C (degree = 44). Further, 
we identified 10 miRNAs (namely hsa-mir-16-5p, hsa-mir-23b-3p, 
hsa-mir-34a-5p, hsa-mir-103a-3p, hsa-mir-107, hsa-mir-124-3p, 
hsa-mir-129-2-3p, hsa-mir-147a, hsa-mir-195-5p, and hsa-mir-205-
5p) that target all the candidate genes (called as candidate 
miRNAs) (Table 3) and validation of these candidate miRNAs 
was performed using the miRCancer database 
(http://mircancer.ecu.edu/) that demonstrated the role of 
miRNAs in EOC progression. 
 
Discussion: 
Epithelial ovarian cancer is one of the most lethal gynecological 
cancers worldwide due to its heterogeneity, delayed diagnosis as 
well as recurrence and drug resistance. In this study, we 
identified 248 DEGs that are common across all four types of 
EOC using comparative gene expression and integrated 
bioinformatics analyses. It is well known that cancer is a complex 
and heterogeneous disease, which is characterized, by extensive 
genomic abnormalities and aberrations in gene expression that 
causes dysregulation of various signaling pathways. Gene 
ontology and pathway enrichment analysis provides substantial 
support that each subtype of EOC follows common molecular 
mechanism in the tumor progression. Biological molecules 
usually exert their functions through a complex interplay of 
interactions. Construction of PPI network among the common 
DEGs and module analysis identified the largest cluster of 15 
genes that formed a close circuitry in the PPI network. 
Subsequently, survival analysis of module genes demonstrated 
that seven genes out of 15 were significantly associated with PFS 
of EOC patients. These significant genes (CCNB1, CENPM, 
CEP55, RACGAP1, TPX2, UBE2C, and ZWINT) might have 
diagnostic, prognostic, and therapeutic applications in EOC 
patients irrespective of their subtypes hence, referred as 
candidate genes. Genetic alteration information of the candidate 
genes illustrated that frequent mutation in these genes associated 
with ovarian cancer. Furthermore, the result of expression 
analysis validates that candidate genes are upregulated in EOC. 
Besides the two-tier validation of the candidate genes, we did a 
comprehensive literature search on the candidate genes and 
found that the candidate genes are involved in various events of 
the cell cycle such as microtubule organization, kinetochore 
complex formation, regulation at G2/M transition, ubiquitination 
process, etc. Cell cycle is one of the most fundamental and highly 
controlled processes that take place in cell. The dysregulation of 
the cell cycle is a hallmark of cancer development. A concise 
description of the candidate genes pertaining to cancer is 
described further. 
 
CCNB1 (G2/Mitotic-specific cyclin B1) is a regulatory protein 
that regulates the cell cycle process at the phase of G2/M 
transition. It has been reported that CCNB1 shows increased 
expression levels throughout the cell cycle in considerable 
cancers including ovarian carcinoma [19]. CEP55 and TPX2 are 
essential for normal mitotic spindle function during cell division. 
These genes play key role in microtubule assembly by interacting 
directly or indirectly with various other proteins like 
microtubule-binding proteins, motors and nucleation factors. 
Growing evidence demonstrates that overexpression of CEP55 
and TPX2 have been implicated in the development of the 
ovarian and numerous other carcinomas [20-22]. CENPM and 

ZWINT are participated in kinetochore complex formation that 
have central role in the assembly of kinetochore proteins, 
chromosome alignment kinetochore-microtubule attachment, 
spindle assembly checkpoint function, and ensures that 
chromosomes are divided equally between daughter cells which 
is required for successful mitotic division. Lately, overexpression 
of CENPM and ZWINT has been reported in human 
malignancies [23-24]. RACGAP1 (Rac GTPase-activating protein 
1), a central spindle complex plays a very important role in 
controlling various cellular processes including invasive 
migration and metastasis through the binding of activated form 
of RhoGTPase. Previous studies reported the overexpression of 
RACGAP1 lead to gastric, ovarian, colorectal, and several other 
cancers, implying its role in promoting tumor progression [25-
27]. A number of studies showed high expression of UBE2C is 
associated with aggressive progression and poor outcomes of 
various types of cancer [27-30]. miRNAs are small, endogenous, 
non-coding RNAs with a length of 19-25 nucleotides that 
participate in numerous biological processes such as cell 
proliferation, invasion and migration by regulating the 
expression of target genes at the post-transcriptional level [31]. 
Dysregulation of miRNAs plays crucial role in tumor initiation 
and progression by acting as either tumor suppressors or 
oncogene [32]. Several studies have shown that large numbers of 
miRNAs are dysregulated in EOC [33-35]. A study by Yang et al 
(2019) reported that miRNA-802 is involved in the ovarian cancer 
development process by regulating the expression level of the 
YWHAZ gene [36]. Another study by Zhang et al (2019) found 
that miRNA-574-3p inhibits ovarian cancer progression through 
expression regulation of EGFR [37].  
 
UBE2C (Ubiquitin-conjugating enzyme E2C) involved in the 
modification of abnormal or short-lived proteins by the addition 
of ubiquitin and lead them toward degradation, a of miRNA-21 
negatively correlated with the PTEN target gene, and 
suppression of miRNA-21 inhibits ovarian cancer progression 
[38]. Thus, these findings suggested miRNA as a diagnostic, 
therapeutic, and prognostic biomarker of EOC. Thus, miRNA and 
candidate gene interaction networks were constructed to 
understand the regulatory mechanism of these genes (Figure 9). 
This work reported 10 miRNAs that regulate the expression of 
the candidate genes. It was reported that downregulation of hsa-
mir-16-5p, has-mir-34a, has-mir-107, and has-mir-124 are 
associated with ovarian cancer [39-41], whereas, upregulation of 
hsa-mir-205-5p drives cell proliferation and metastasis in ovarian 
carcinoma [42]. Though it was reported that hsa-mir-103a-3p, 
hsa-mir-23b-3p, hsa-mir-129-2-3p, hsa-mir-147a, and hsa-miR-
195-5p contribute to tumor growth [43-46], but their exact role in 
ovarian cancer needs to be examined. 
 
Conclusions: 
Determination of underlying molecular interaction networks 
involved in the formation and progression of the four subtypes of 
EOC may aid in the treatment of the disease. A protein-protein 
interaction (PPI) network analysis of the common DEGs helped 
to glean seven key candidate genes (CCNB1, CENPM, CEP55, 
RACGAP1, TPX2, UBE2C, and ZWINT). We also reported 10 key 
candidate miRNAs (hsa-mir-16-5p, hsa-mir-23b-3p, hsa-mir-34a-
5p, hsa-mir-103a-3p, hsa-mir-107, hsa-mir-124-3p, hsa-mir-129-2-
3p, hsa-mir-147a, hsa-mir-205-5p, and hsa-mir-195-5p) linked to 
the candidate genes. These derived data find application in the 
understanding of EOC. 
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