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Abstract: 
Protein-protein interactions (PPI) are pivotal to the numerous processes in the cell. Therefore, it is of interest to document the analysis of 
these interactions in terms of binding sites, topology of the interacting structures and physiochemical properties of interacting interfaces 
and the of forces interactions. The interaction interface of obligatory protein-protein complexes differs from that of the transient 
interactions. We have created a large database of protein-protein interactions containing over100 thousand interfaces. The structural 
redundancy was eliminated to obtain a non-redundant database of over 2,265 interaction interfaces. Therefore, it is of interest to document 
the analysis of these interactions in terms of binding sites, topology of the interacting structures and physiochemical properties of 
interacting interfaces and the offorces interactions. The residue interaction propensity and all of the rest of the parametric scores converged 
to a statistical indistinguishable common sub-range and followed the similar distribution trends for all three classes of sequence-based 
classifications PPInS. This indicates that the principles of molecular recognition are dependent on the preciseness of the fit in the interaction 
interfaces. Thus, it reinforces the importance of geometrical and electrostatic complementarity as the main determinants for PPIs. 
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Background: 
The cellular milieu where proteins perform their function is 
crowded. However, the spatial and temporal preciseness of 
interactions is rarely violated. This specificity and accuracy of the 
interacting proteins determines the fate of cells [1-3]. Protein–
protein interactions (PPIs) form the very basis for all biological 
processes, such as signal transduction, material /energy transport, 
metabolic reactions, regulation of gene expression, cellular growth 
and proliferation[3-6]. These interactions form the fundamentals of 
the intracellular / intercellular communications [7]. Proteins 
therefore act as communication cogs, transferring the information 
through conformational changes and triggering corresponding 
transient structural adjustments in other molecules [8-9]. 
Understanding the protein interactions and enumerating the 
precise rules that govern these interactions mediate these molecular 
communication events can provide us with the deeper insights 
about metabolic and signaling network dynamics [10]. Any 
deviation from the normal interaction behavior of a protein leads to 
the gain or loss of a function, often leading to debilitating diseases 
such as neuro-degenerative diseases, cancer or even auto-immune 
problems [11]. 
 
The PPI manifests in formation of various types of complexes (viz. 
protein-protein complex, protein-DNA complex, protein-RNA 
complex, protein-membrane complex, protein-lipid complex, 
protein-carbohydrate complex, and others). In protein-protein 
complexes, the interaction of two or more proteins is very specific 
and is usually characterized by only a small subset of their surfaces 
[12-15]. Only those sites which own the proper binding features 
participate in the formation of PPCs [16-20] (Supplementary Figure 
1).Such understanding may augment the development of 
computational tools for PPI sites prediction [9], and drug discovery 
[20-22]. In this direction, various research groups have examined 
the protein binding sites with respect to their size, shape, 
evolutionary conservation, chemical and amino acid composition, 
change in solvent accessibility of amino acids, and other such 
parameters. For example, Jones and Thornton, derived a parameter 
to determine the planarity index of the protein-protein interfaces 
[20]. As per their study, the average value of the planarity is 3.5 ± 
1.7 Å for homodimers and 2.8 ± 0.9 Å for heterocomplexes. Bogan 
and Thorn showed that evolutionary conserved residues (often 
termed as hot spot residues) are the major contributor to the 
binding energy of the interactions [26].  Ozdemir et al. (2018) 
showed that a slight disruption in conserved residues more often 
results in change in the binding affinity and specificity [27]. Lo 
Conte et al. (1999) described the extent of burial of protein surface, 
during complex formation. He identified thisto be in the range of 
1600 (±400) Å2 of interaction site for majority of heteromeric protein 
complexes. Bahadur et al. (2004) reported the abundance of 
aliphatic and aromatic residues and deficit of charges residues 
(except for Arg) in homodimeric interfaces in conformation with 
previous studies [21, 28, 29, 30]. We have studied protein-protein 
interaction interfaces (PPIIs) inPPInS and NRDB [31]. On the basis 
of sequence similarity between the interacting protein chains 
thePPIIs from both the datasets were classified into low-sequence, 
moderate-sequence, and high-sequence similarity classes. All three 

classes of NRDB dataset were examined for six important 
parameters of: residue interface propensity, hydrophobic content, 
solvation energy, compactness of interacting residue’s 
neighborhood, planarity, and depth index. 

 
Materials and Methods 
Datasets of protein-protein interaction interfaces 
 
(i) Protein-protein interaction sitesbase (PPInS) has the protein-
protein complexes (PPCs)as reported in PDB with their structural 
classification based onSCOPe (version 2.06). It harbors over 32000 
X-ray crystallized structures of PPCs with structural resolution 
better than 2.5 Å. The information about these PPCs is available in 
the form of atom contact pairs wherein two atoms belonging to two 
different protein chains of a PPC were considered to be in contact if 
the intervening distance between them was less than the sum of 
their van der Waals radii plus 1 Å as a tolerance factor. We utilized 
the entire PPInS and its non-redundant form (NRDB) database for 
our study. 
 
(ii) Categorization of PPIIs based on the sequence similarity in 
the interacting protein chains 
Tostudy the influence of homo or heterodimeric nature of the 
proteins in PPIs, sequence similarity between the protein chains 
involved in the PPII was calculated using BLAST [32]. Based on 
sequence similarity observed, PPIIs were categorized into three 
classes. If the interacting protein chains were similar homologous 
up to 49%, then the corresponding PPII was marked under low 
sequence similarity (LSS) class; the PPIIs with protein chains 
sharing 50-89% sequence similarity were grouped under moderate 
sequence similarity (MSS) class; and the PPIIs with protein chains 
sharing 90-100% sequence similarity were grouped under high 
sequence similarity (HSS) class. All PPIIs from both of the datasets 
were categorized into three PPII classes. 
 
Calculation of residues’ interface propensity: 
Not all the amino acid residues favor their occurrence on the 
protein surface, some prefer to stay in the protein core thereby 
avoid or does not contribute much in protein complexation [28, 33-
34]. The relative contribution of amino acids in promoting a protein 
site as the binding site is described as residue interface propensity 
(RIP) and is defined as the ratio of residue’s relative contribution to 
the protein binding site to its relative contribution to the complete 
protein surface [35]. To calculate the RIP, PPIIs from the NRDB only 
were taken into consideration. The area contributed by an amino 
acid i to the protein binding site was calculated as the difference 
between its solvent accessible surface area (SASA) bearing its 
unbound and bound states. The propensity of a residue i to occur 
on the protein binding site (𝜃𝜃𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃 ) was calculated using Eq. 1 
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where 𝛥𝛥𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃  is the SASA of residue i buried in protein bound 
state, ∑ 𝛥𝛥𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆𝑗𝑗𝑃𝑃𝑃𝑃𝑃𝑃20

𝑗𝑗=1  is the total SASA of all residues buried in 
protein bound complexes, 𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃 is the SASA contributed by 
residue i to the protein surface, and ∑ 𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆𝑗𝑗𝑃𝑃𝑃𝑃𝑃𝑃20

𝑗𝑗=1  is the total 
solvent accessible surface area of all residues of the protein. 
 
Analysis of protein-protein interaction interfaces/patches with 
respect to binding site parameters: 
The binding nature of proteins is determined from 
physicochemical, structural, and evolutionary properties of their 
constituents favouring the non-covalent interactions with partner 
protein(s). Such properties bring two molecules closer, influence 
them for biological interactions, and define the destiny of the PPCs. 
Knowing the implications of protein binding sites analysis in 
protein engineering, all of the 223,714 PPIPs from PPInS and 4,530 
PPIPs from NRDB were examined with respect to various PPI site 
parameters. While analyzing a PPIP, if an atom from a PPIP was 
seen interacting with more than one atom of the partner PPIP, its 
contribution in PPII formation was considered only for once. 
 
Hydrophobicity: 
The hydrophobic residues are reported in abundance of PPI sites 
[36]. The kinetics of interfaces with predominant hydrophobic 
residues are reported to be different than hydrophilic ones because 
the tightly bound aquasphere of surface bound water molecules 
acts as an additional barrier that has to be removed before direct 
protein-protein interaction can take place[29]. To determine the 
level of hydrophobicity (Ф) associated with PPIPs, the 
hydrophobicity scale for amino acids was used from literature[37]. 
For each interacting atom in the PPIP, its corresponding 
hydrophobicity score was obtained by dividing the residue 
hydrophobicity score by the number of atoms of the residue. The 
hydrophobicity score of all interacting atoms in the protein-protein 
interaction patch (PPIP) was calculated by linear augmentation to 
represent the hydrophobicity score of the PPIP (Eq. 2 and 3) 
 
∅𝑖𝑖 =  𝜑𝜑𝑎𝑎𝑎𝑎

𝑁𝑁𝑎𝑎𝑎𝑎
    → Eq. 2 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃Ф = ∑ ∅𝑖𝑖𝑁𝑁
𝑖𝑖=1    → Eq. 3 

Where, ∅𝑖𝑖  represents the average hydrophobicity for ith atom of an 
amino acid. 𝜑𝜑𝑎𝑎𝑎𝑎 represents the hydrophobicity value for a particular 
amino acid and 𝑁𝑁𝑎𝑎𝑎𝑎 represents the number of atoms in that amino 
acid, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃Ф  represents the total hydrophobicity score for an 
interacting patch, and N represents total number of atoms on an 
interacting surface. 
 
Solvation free energy:  
The solvation free energy of amino acids from the interacting 
protein also influences its kinetics, hence we calculated the 
solvation free energy (𝜔𝜔 ) of PPIP by linear summation of the 
average individual contributions of the interacting atoms (Eq. 4 and 
5). The solvation free energy scale for amino acids given by Wimley 
et al., 1996 [38] was used.  
 
𝜔𝜔𝑖𝑖 =  𝜔𝜔𝑎𝑎𝑎𝑎

𝑁𝑁𝑎𝑎𝑎𝑎
           → Eq. 4 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝜔𝜔 = ∑ 𝜔𝜔𝑖𝑖
𝑁𝑁
𝑖𝑖=1  → Eq. 5 

 
Where, 𝜔𝜔𝑖𝑖  represents the average solvation energy for ith atom of an 
amino acid.  𝜔𝜔𝑎𝑎𝑎𝑎    represents the hydrophobicity value for a 
particular amino acid and N represents the number of atoms in the 
interacting surface and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝜔𝜔  represents total solvation energy 
score for an interacting patch, and N represents total number of 
atoms on an interacting surface. 
 
Size of the interacting patch:  
The protein-protein interaction patches are generally very small 
region on the protein surface withvery specificcertain structural / 
thermodynamical features. We determined the size of such 
interaction interfaces by summing up the difference of the solvent 
accessible surface area (SASA) of the atoms in the bound and 
unbound forms. 
 
𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝒔𝒔 = 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝒂𝒂𝑼𝑼 + 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝒃𝒃𝑼𝑼 − 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝒂𝒂∷𝒃𝒃𝑩𝑩   → Eq. 6 
 
Where, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠  represents size of an interacting patch,𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆𝑎𝑎𝑈𝑈  and 
𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆𝑏𝑏𝑈𝑈 represents SASA of chains “a” and “b” in unbound states, 
and 𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆𝑎𝑎∷𝑏𝑏𝑃𝑃  represents the SASA of the complex (a::b). 
 
Depth index:  
Contrary to the ASA,the depth index of an amino acid indicates the 
extent to which an amino acid is buried in the protein core. The 
location of amino acids in proteins is determined using their 
solvent accessibility. An amino acid is said to exist on protein 
surface if the sum of solvent accessibilities for all of its constituting 
atoms is a non-zero value. While the amino acids with zero solvent 
accessibility are considered to be buried in the protein core [39].The 
depth index of PPIP (ζ) was computed using PSAIA [30]. The depth 
index of each interacting atom from a PPIP was summed up and 
represented as a depth index of the PPIP (Eq. 7) 
 
𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝜻𝜻 = ∑ 𝜻𝜻𝒊𝒊𝒏𝒏

𝒊𝒊=𝟏𝟏   → Eq. 7 
where n represents the total number of interacting atoms in the 
PPIP, and 𝜁𝜁𝑖𝑖  represents the per-atom depth score of the interacting 
atom.  
 
Protrusion index:  
The protrusion index studies the topology of the interface site and 
gives the measure of how much dense is the neighborhood of an 
atom on the protein surface [40].The protrusion index of PPIPs (𝜓𝜓) 
was also determined by using PSAIA [30] in a manner similar to the 
depth index for all non-hydrogen atoms (Eq. 8). 
 
𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝜳𝜳 = ∑ 𝜓𝜓𝑖𝑖𝒏𝒏

𝒊𝒊=𝟏𝟏   → Eq. 8 
 

where n represents the total number of non-hydrogen interacting 
atoms in the PPIP, 𝑛𝑛𝑖𝑖  represents the non-hydrogen interacting 
atom, and 𝜓𝜓𝑖𝑖  represents the per-atom protrusion score of the non-
hydrogen interacting atom. 
 
Planarity index:  
The protein binding sites are flat and circular in shape [41]. The 
calculation of root mean square deviation of all the surface atoms 
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from the least-squares plane (derived from the surface atoms) gives 
the planarity index of the interacting interfaces. If all atoms 
correctly fit a plane, the planarity index comes out to be zero.To 
calculate the planarity index of the PPIPs, princip function of the 
SURFNET [42] was used. Using princip, an equation of plane was 
derived by employing the coordinates of the interacting atoms in 
the PPIP. Following this, the root-mean-square deviation (RMSD) of 
interacting atoms from the derived plane was determined and 
designated as the planarity index of the PPIPs. 
 
Statistical analysis of PPII parametric scores obtained from PPInS 
and NRDB analysis: 
The overall trends of parameteric score distribution wereapparently 
very similar. Hence, the statistical aspect of the data was explored. 
The distributions of PPIP parametric scores (after removal of 1% 
statistical outliers) for each PPI site parameter from all three PPII 
classes were taken into the consideration. For each PPI site 
parameter, the mean and standard deviation of parametric scores 
were calculated with respect to each PPII class separately. 
Thereafter, for each PPII class, p-value describing the statistical 
significance between the parametric score of three PPII classes was 
calculated using two-tailed ANOVA test. 
 
Results and Discussion: 
We examined the PPIPs derived from experimentally determined 
PPCs in terms of various physicochemical and geometrical 
properties. Two datasets viz. PPInS and NRDB where interaction 
sites were demarcated based on the inter atomic distance between 
the constituents of two protein chains of the PPCs, were considered 
for the study. The collection of ACPs between two protein chains of 
a PPC were referred as the PPII while the collection of atoms 
involved in PPII from each interacting protein chains were termed 
as the PPIPs. All the PPIIs from PPInS and NRDB were categorized 
into three separate classes viz. LSS, MSS, and HSS by looking at the 
sequence similarity between the protein chains involved in 
formation of PPII under consideration (Table 1). Out of total 111,857 
PPIIs in PPInS, around 73% of PPIIs were formed by the protein 
chains sharing HSS. Around 25% PPIIs were formed by the protein 
chains sharing LSS, and only 2% PPIIs were results of the 
interaction between protein chains sharing MSS. For NRDB, the 
values for PPIIs with HSS, LSS, and MSS were around 62%, 32%, 
and 6%, respectively. This showed the presence of homodimers in 
abundance. The possible reasons for this may be the fact that the 
origin of life started with interactions in absolutely homologous 
proteins. However, through the course of evolution, perturbation in 
the genomic code might have caused the formation of heterologous 
protein complexes. Similar findings have been reported by (Winter 
el al., 2002) [43]. The factors which might have played a crucial role 
in bringing two heterologous protein units closer must be their 
physicochemical, geometrical and other characteristics. 
 
Table 1: Categorization of PPIIs 
Dataset Number of PPIIs 

LSS MSS HSS 
PPInS 27,770 2,591 81,496 
NRDB 724 130 1,411 
 

Calculation of residue interface propensity (RIP): 
The RIP was calculated separately for all three classes of PPIIs (LSS, 
MSS, and HSS) of NRDB (Figure 1). The propensity scores that we 
have obtained are quite similar to those which were earlier 
proposed [21-22]. The higher propensity for aromatic amino acids 
(Tyr, Phe, and Trp) and aliphatic hydrophobic amino acids (Met, 
Cys, Ile, Leu, Val) on interacting interface is reported in these 
studies unanimously. In other studies [26, 39, 44] too, the aromatic 
residues were reported in abundance on interaction sites. One 
reason behind this greater occurrence is the predominant 
contribution of solvation and hydrophobic effect [45, 46]. The small 
amino acids such as Ala, Gly, Ser, and Thr is comparatively 
marginal, they have no specific tendency to either avoid or favour 
the PPIIs in terms of occurrence. Asn, Gln, and Pro too are 
borderline PPII avoiders while His slightly favours its occurrence 
on the PPIIs. It is necessary to point out that His exists in multiple 
protonation states and our data does not differentiate among these. 
It is possible that some protonation states could decisively 
dis/favour the PPIIs, and our data is only an average of the overall 
effect. The charged amino acids (Lys, Glu, Asp), with the exception 
of Arg (which was relatively neutral), had the least propensity to 
occur on PPIIs and this was also reported by many groups [21, 22]. 
The reduced presence of Glu and Asp on PPIIs is perhaps rooted in 
their inability to form interaction with aromatic hydrophobic amino 
acids. Although Lys has the ability to form cation-Pi interaction, yet 
the conformational entropy associated with multiple single bonds 
would not favour the PPI. 
 

 
Figure 1: Residue’s interface propensity 
 
Table 2: RIP in different PPII classes of NRDB 
PPII Class Relative order of amino acids in terms of their RIP 
LSS K<E<D<N<Q<S<P<T<G<A<H<R<V<L<I<M<C<Y<F<W 
MSS K<E<D<P<Q<N<S<A<T<G<H<R<M<V<L<I<W<F<C<Y 
HSS K<E<D<N<Q<P<G<S<T<R<A<H<V<I<L<M<C<Y<W<F 

 
Analysis of PPIPs from PPInS and NRDB: 
The result obtained by analyzing the PPIPs from all the three PPII 
classes (LSS, MSS, and HSS) of the PPInS and NRDB dataset are 
given in Table 3 and 4, respectively. The parametric scores for all 
the PPIPs from LSS, MSS, and HSS are shown graphically in 
supplementary figures S2-S7enmasse. In Table 5, the statistical 
analysis of PPIP parametric scores is presented in terms of mean, 
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standard deviation, and p-value (calculated using two-tail ANOVA 
test). The statistical analysis was carried out considering all three 
PPII classes of both the datasets separately as well as collectively.  
 
Analysis of PPIPs from the PPInS dataset: 
The PPIPs were analyzed with respect to hydrophobicity, solvation 
free energy, depth index, size of the interacting patch, protrusion 
index, and planarity. It is pertinent to mention that on analyzing 
PPIPs from PPInS, initially, a significant difference between the 
parametric scores (obtained with respect to each PPI site parameter) 

of the three PPII classes was observed (Table 3). However, on 
removing less than 1% PPIPs (statistical outliers) from each PPII 
class, the cumulative parametric scores for depth, protrusion, and 
planarity index of PPIPs from all three classes of PPII reduced 
down to the identical ranges. Similarly, the cumulative score for 
solvation free energy and hydrophobic content of PPIPs also were 
also seen converging to a common sub-range. The possibility that 
these trends were on account of proportional redundancies of PDB, 
we looked for the same patterns in the NRDB.  

 
Table 3: Analysis of PPIPs from PPInS 
Parameter Before removal of outliers After removal of 1% statistical outliers 

LSS MSS HSS LSS MSS HSS 
Hydrophobicity -0.69 to 57.1 -0.39 to 59.12 -1.38 to 114.41 -0.69 to 28 -0.39 to 28 -1.38 to 32 
Solvation free energy -9.37 to 33.71 -5.32 to 32.19 -9.85 to 132.18 -9.37 to 20 -5.32 to 20 -9.85 to 18  
Depth -0.1 to 39.63 0 to 34.15 0 to 127.59 -0.1 to 12 0 to 10 0 to 11 
Size of interacting patch 4 to 11532 7 to 11203 3 to 17409 4 to 6000 7 to 5500 3 to 6500 
Protrusion 0 to 168.99 0 to 85.2 0 to 182.07 0 to 65 0 to 65 0 to 65 
Planarity 0 to 10.85 0 to 9.84 0 to 13.56 0 to 8 0 to 8 0 to 8 

 
Table 4: Analysis of PPIPs from NRDB 

Parameter Before removal of outliers After removal of 1% statistical outliers 
LSS MSS HSS LSS MSS HSS 

Hydrophobicity -0.58 to 101.11 0.36 to 46.13 -1.38 to 525.05 -0.58 to 36.42 0.36 to 30.34 -1.38 to 93.44 
Solvation free energy -5.67 to 32.65 -5.32 to 32.19 -28.45 to 277.38 -5.67 to 21.08 -5.32 to 22.93 -28.45 to 31.89 

Depth 0 to 47.10 0 to 34.15 0 to 172.87 0 to 13.25 0 to 13.04 0 to 27.87 
Size of interacting patch 112 to 10876 149 to 5713 143 to 17324 112 to 7048 149 to 5713 143 to 8409 

Protrusion 0 to 179.47 0 to 76.28 0 to 1199.49 0 to 79.72 0 to 72.29 0 to 149.55 
Planarity 0.18 to 10.76 0.26 to 7.81 0 to 13.45 0.18 to 8.20 0.26 to 7.79 0 to 9.20 

 
Table 5: Statistical analysis of PPIP parametric scores (after removal of 1% statistical outlier) 
Parameter PPII Class PPInS NRDB 

Mean (𝜇𝜇) S.D. (𝜎𝜎) p-value Mean  (𝜇𝜇) S. D. (𝜎𝜎) p-value 
Hydrophobicity LSS 5.581 5.760 2.8E-96 7.700 7.498 8E-09 

MSS 6.617 6.893 8.306 6.854 
HSS 6.193 6.389 11.053 21.331 

Solvation free energy LSS 3.01 4.087 1E-141 3.426 4.129 0.0005 
MSS 3.246 4.721 4.428 5.168 
HSS 2.537 4.101 4.691 12.218 

Depth LSS 1.826 2.325 2.6E-07 2.230 2.863 1E-07 
MSS 1.957 2.398 2.687 3.408 
HSS 1.889 2.664 3.356 7.525 

Size of interacting patch LSS 1214.913 1144.957 2.3E-52 1538.124 1249.268 4E-14 
MSS 1450.722 1427.384 1811.303 1277.189 
HSS 1278.987 1225.606 1927.434 1673.538 

Protrusion LSS 12.231 13.122 1.8E-73 15.487 15.201 2E-05 
MSS 13.712 14.566 17.560 14.690 
HSS 11.354 12.631 21.155 46.581 

Planarity LSS 2.091 1.441 9.1E-58 2.642 1.444 0.0002 
MSS 2.368 1.840 3.070 1.720 
HSS 2.042 1.517 2.790 1.774 

 
Analysis of PPIPs from NRDB dataset: 
The analysis of PPIPs from NRDB considering both the cases, i.e. 
analysis of all PPIP from each PPII class and analysis of PPIPs after 
removing less than 1% statistical outlier from each PPII class, also 
showed the similar trends for the parametric scores for each PPI site 
parameter (Table 4). Here, the range of parametric scores for each 
PPIP parameter (except for the planarity) showed the greater 
variability. After removal of outliers, only the PPIPs from LSS and 
MSS class found to converge into a common sub-range for 
parametric scores. However, this could be explained by the 
methodology of database creation. At the time of NRDB creation, 
for each pair of SCOP superfamily pair, the PPII selected as a part 

of NRDB was the one with maximum number of ACPs among all 
the PPIIs sharing the same SCOP superfamily pair. Therefore, it 
was obvious for the larger PPIPs to possess relatively higher 
cumulative hydrophobicity, solvation energy, and other parametric 
scores. But, as the planarity index of PPIPs is not much dependent 
on the size of interacting patches (i.e. PPIPs), the cumulative 
parametric score obtained for planarity for each PPII class, confined 
to a common sub-range.  
 
The size of PPIPs varied for each of these classes (MSS, LSS, and 
HSS) and it was least for MSS and highest for the HSS. The 
maximal tail size of the interacting patch of LSS was almost 1300 Å2 
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less than HSS and 1300 Å2 more than MSS. The effect of size can be 
seen for the rest of the parameters except for planarity index. 
Planarity score was an average measure of RMSD of PPIP 
constituent atoms from the best-fit plane, hence this value was 
almost size independent. The hydrophobicity showed the largest 
variation, with range for values corresponding to HSS (-1 – 93) was 
almost 3 times that of LSS (-1 – 36) and MSS (0 – 31). The parametric 
range for cumulative depth and protrusion index for HSS (Depth: 0 
– 28 and Protrusion: 0 – 150) was almost twice that of the other two 
classes. The upper and lower meniscus for solvation free energy of 
HSS (-29.0 kJ·mol−1– 32 kJ·mol−1) was very broad as that of LSS (-6.0 
kJ·mol−1 – 21 kJ·mol−1) and MSS (-5.0 kJ·mol−1– 23 kJ·mol−1). In 
Supplementary Figures 8-13, the trend of parametric values 
obtained for around 99% of the PPIPs from each of the three PPII 
classes of both PPInS and NRDB datasets with respect to six PPI 
parameters are shown. 
 
Analysis of PPIPs with respect to the hydrophobicity: 
The hydrophobic analysis of PPIPs from PPInS and NRDB revealed 
that even though the range of hydrophobicity values of PPIPs 
differed among HSS, MSS, and LSS (Figure 2), the distribution of 
the parametric scores followed almost the same pattern. The 
statistical analysis of parametric score distribution with respect to 
mean, standard deviation, and p-values (Table 5) support the 
hypothesis that the cumulative hydrophobic content of PPIP from 
all the PPII classes is significantly same. And, this was applicable 
for PPIIs from both the datasets. The hydrophobicity score for the 
PPInS is multi-peak, whereas the same obtained from NRDB is 
single-peak. This apparent difference is perhaps due to the high 
order of redundancy in PDB for PPI complexes with the relatively 
larger contribution of hydrophobic effect in the binding energy. As 
the hydrophobicity is a major contributor to the formation of 
protein crystals [47, 50], thus, the majority of the PPInS have a very 
high hydrophobicity component in the interacting energetics. 
 
This redundancy is removed in the NRDB and as a consequence of 
which the multi-peak distribution converges to a single-peak. 
Clearly, the hydrophobicity values for PPIPs can vary from as low 
as 100 to as high as 0 (NRDB part of Figure 3) (See methods 
section). However, the majority of the PPIPs have the hydrophobic 
score of 5-8 irrespective of homo/heterodimeric nature of 
complexes. The analysis made by [49-50] concluded that the 
hydrophobic effect is predominated contributor in the formation of 
obligate complexes. The trends of the cumulative hydrophobic 
index of the PPIPs as seen in Figure 2, clearly shows that the 
proportionate-contribution of hydrophobic effect (on an average) is 
independent of the extent of sequence similarity between the 
interacting interfaces. 
 
Analysis of PPIPs with respect to solvation free energy (in 
KJ/Mol) 
The range of solvation free energy values of PPIP does not differ 
amongst HSS, MSS, and LSS (Figure 3) as the graphs follow an 
identical pattern with statistical similarity among the parametric 
scores of different PPII classes (Table 5). This was true for NRDB 
too. This similarity is perhaps due to the uniform nature of PPI, 

which is also one major reason that solvation-energy based 
prediction tools for PPI and drugability studies are more successful 
[51-52]. Interestingly the nature of complexes – whether 
homodimeric or heterodimeric doesn’t influence the peak of 
solvation free energies in NRDB or PPInS.  
 

 
Figure 2: Hydrophobicity index of PPIPs 
 

 
Figure 3: Solvation free energy (in KJ/mol) score of PPIPs 
 
Analysis of PPIPs with respect to the depth index 
The distribution range of the depth index of PPIP also does not 
differ amongst the three classes of PPInS and NRDB both, as seen in 
Figure 4 where the graphs follow an identical pattern. The depth 
index of the PPInS is the same as obtained for the PPIPs from 
NRDB with single-peak with similar shoulders. The statistical 
analysis of cumulative depth distribution for each PPII class of the 
both of these datasets was also significantly same (Table 5). The 
very low value of cumulative depth index shows that the atoms 
involved in PPIPs are on the surface. This may be due to the effect 
of interacting surface induction. The majority of PPIPs have 
identical cumulative depth index and this fact is not influenced by 
the extent of redundancy in the datasets. Irrespective of the 
structural/functional class of the protein, the cumulative depth 
index of the PPIP remains more or less constant. This is another 
indication that irrespective of the homo/heterodimers, the 
physicochemical and structural parameters governing PPI occupy 
the same value-space.  
 

 
Figure 4: Depth index of PPIPs 
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Analysis of PPIPs with respect to the size of interacting patch (in 
Å2) 
The size of interacting patches has a direct relationship with the van 
der Waals (vdW) forces of interactions. Greater the size of PPIP, 
larger is the vdW interaction energy of PPIPs. In earlier studies [18, 
53], a limited number of PPCs were studied and it was observed 
that on an average PPI had a size of 800 ± 400 Å2. This is similar to 
earlier reportswhich reported the size of the interfaces as small as 
~800 Å2[19]. In another study [53] the size of interfaces was found 
in the range of 415 to 3568 Å2 for heterodimers, 550 to 4718 Å2 for 
homodimers, and 423 to 2361 Å2 for transient complexes. In our 
study too, the interfaces from PPInS dataset are reported with size 
upto 6500 Å2 (Figure 5-Left) while in NRDB interaction interfaces 
are reported to be between 112 Å2 to 8400 Å2 (Figure 5-Right)per 
interacting partner. However, most of the PPIIs from PPInS and 
NRDB were seen covering protein surface up to within 800 ± 400 Å2 

and 1200 Å2 ± 400 Å2,respectively in conformity with earlier studies 
[21, 22]. In Figure 6, the interacting region of protein chains with 
smallest as well as largest PPIP size from NRDB and PPInS is 
shown. For this parameter too, the statistical analysis carried out to 
analyze the distribution of PPIP size, considering all PPII classes of 
both the datasets, showed the similarity in terms of the PPIP size 
(Table 5). 
 

 
Figure 5: Size of PPIPs 
 

 
Figure 6: PPIIs with smallest and largest interacting interface from 
PPInS and NRDB. The interaction interface is shown in red and 
green. (i) 4Z78::chains A:E (21 Å2 and 30 Å2; (ii) 1EFU: chains B:C 
(201 Å2 and 165 Å2); (iii) 5AVN: chains A:B (6363 Å2 and 6291 Å2); 
(iv) IOWC: chains A:B (8491 Å2 and 8570 Å2)  
 

Analysis of PPIPs with respect to the protrusion index 
The protrusion index or the compactness of neighborhood of 
interacting residues has been studied by some groups [56] and it 
has been seen that its average value ranges from 0 to 14 [40]for 
protein atoms. In our datasets, we studied the cumulative 
protrusion index (Figure 7). Surprisingly its value (between 7-10) 
was very low, considering the large number of atoms that 
contribute to the PPII. This indicates the relatively higher packing 
(thus increased neighbor density) and perhaps also reduced 
flexibility as reported earlier [56]. This is an important parameter 
for prediction of hot-spots residues on PPI sites. Irrespective of 
sequence similarity between the interacting partners protrusion 
index followed an identical distribution (Table 5). Interestingly the 
nature of complexes – whether homodimeric or heterodimeric does 
not differentially influence the protrusion index (compact 
packaging of the PPI site). 
 

 
Figure 7: Protrusion index of PPIPs 
 

 
Figure 8: Planarity score of PPIPs 
 
Analysis of PPIPs with respect to the planarity index 
The planarity analysis of PPIPs revealed the clear independency of 
the type and size of protein in terms of their binding site 
preferences (Figure 8). For both the datasets, PPInS (which is 
repository of over two hundred thousand PPIPs) and the NRDB 
(having PPIPs with size up to 8400 Å2), the deviation of interacting 
atoms from the derived plane was found in the range of 0-8 Å. 
Maximum number of PPIPs were reported with deviation of 1-5 Å 
which is analogous to the previous findings [19, 28, 51, 53, 57]. 
These findings hold true for all three respective PPII classes of both 
the datasets. The analysis of parametric score distributions with 
respect to three PPII classes of the both the datasets also showed the 
similarity in terms of their level of flatness (Table 5).  
 
Conclusion: 
The protein-protein interaction interfaces from two datasets, 
covering the largest collection of experimentally determined 
protein-protein complexes ever, were examined in terms of their 
hydrophobic content, associated solvation energy, compactness of 
interacting residue’ neighborhood, planarity and depth index. 
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Analysis of PPIPs from NRDB pertaining to RIP showed the 
presence of aliphatic and aromatic residues on interaction sites in 
abundance and deficit of charged residues (except Arg) as reported 
in previous studies. On analyzing PPIPs from PPInS, initially, a 
significant difference between the parametric scores (obtained with 
respect to each PPI site parameter) of the three PPII classes was 
observed. However, on removing less than 1% PPIPs (statistical 
outliers) from each PPII class, the cumulative parametric scores for 
each PPI site parameter from all three classes of PPII reduced down 
to the identical ranges. The analysis of PPIPs from NRDB 
considering each PPII class (with and without outliers) also showed 
the similar trends for the parametric scores for each PPI site 
parameter, however, with greater variability (except for the 
planarity). As the PPIPs in HSS class were relatively larger in size, 
the resulting cumulative score could not get aligned with the scores 
from LSS and MSS wherein they were found to converge into a 
common sub-range after outlier removal. However, overall, the 
objective analysis of PPIPs (from all three PPII classes of both the 
datasets) with respect to all PPI sites parameters showed the similar 
trends. This indicates that the principles of molecular recognition 
among proteins are not driven by their sequence / structural 
similarity and reinforces the importance of geometrical and 
electrostatic complementarity as the main component for PPIs. 
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