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Abstract:  
The Next-Generation Sequencing (NGS) platforms produce massive amounts of data to analyze various features in environmental samples. 
These data contain multiple duplicate reads which impact the analyzing process efficiency and accuracy. We describe Fast-HBR, a fast and 
memory-efficient duplicate reads removing tool without a reference genome using de-novo principles. It uses hash tables to represent reads 
in integer value to minimize memory usage for faster manipulation. Fast-HBR is faster and has less memory footprint when compared with 
the state of the art De-novo duplicate removing tools. Fast-HBR implemented in Python 3 is available at https://github.com/Sami-
Altayyar/Fast-HBR. 

 
Background: 
The number of the publicly available NGS projects tripled from 
1200 in 2017 to 3500 in 2020 [1-2]. Therefore, preprocessing of data 
is essential to reduce the size of the data with an adequate level of 
data quality [3]. One of the preprocessing steps that reduce the 
dataset size is removing duplicate reads in the dataset. This step is 

essential for sequence-based algorithms since duplicate reads affect 
the algorithm accuracy [4]. Removing duplicate reads may reduce 
the assembly algorithms consumption of RAM [5]. Duplicate reads 
removal tools are either reference based or de novo. Some examples 
of de novo tools are CD-HIT [6], FastUniq [7] and Fulcrum [8]. 
Available de novo tools include NGS Reads Treatment [9], Nubeam-
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dedup [5], BioSeqZip [10] and Minirmd [11]. NGS Reads Treatment 
[9] is a hash-based tool that uses Cuckoo Filter [12] which is a 
probabilistic data structure. The authors elsewhere [5] developed 
the Nubeam-dedup tool that uses Nubeam [13] to represent each 
read as a number by calculating a product of matrices that 
represent nucleotides in the read. The BioSeqZip [10] tool starts by 
splitting the reads into small chunks, and then it sorts them 
alphabetically with memory limiting feature having long 
processing time. Minirmd [11] with the help of k-minimizer [14] 
clusters the reads into groups, where each group will contain reads 
that have the same k-minimizer in the same position. Therefore, it is 
of interest to describe Fast-HBR, a fast and memory-efficient 
duplicate reads removing tool without a reference genome using 
de-novo principles. 
 

 
Figure 1: Fast-HBR methodology illustrated using an example. 
 
Methodology: 
Fast-HBR is implemented in Python 3. Therefore, it is platform-
independent. The source code is available at 
https://github.com/Sami-Altayyar/Fast-HBR. It uses Python's 
built-in hash function to represent reads (in nucleotide or amino 
acid level) as an integer value. The reads hash value is stored in a 
set and each new read hash value will compare to the set items to 
decide if it is duplicate or not. The input files are either a single-end 
or paired-end, and it could process the files with reverse 
complement removing option or without it.  
 
Single-end files: 
In single-end files, each read is independent; therefore its 
evaluation process will depend only on its hash value. Fast-HBR 
will starts by creating a set (UniqSet) to store all unique hash 
values. After that, it extracts from the input file one read at a time 
and then calculate the hash value (HV1) of the read. Depending on 
HV1 and the reverse complement removing option, Fast-HBR will 
have three cases. In the first case, if HV1 is in UniqSet, the read will 
consider a duplicate and will be discarded. In the second case, if 
HV1 is not in UniqSet and the reverse complement removing 
option is not activated, then HV1 will be added to UniqSet and the 

read will be written in the output file. In the third case, if HV1 is not 
in UniqSet and the reverse complement removing option is 
activated, Fast-HBR will calculate the hash value of the reverse 
complement of the read (HV2).  If HV2 is in UniqSet the read will 
consider a duplicate and will be discarded. Otherwise, the read is 
unique and then only HV1 will be added to UniqSet and the read 
will be written in the output file. 
 
We consider the input reads and their reverse and the hash values 
for the reads and the reverse as shown in Figure 1A. In the 
beginning, the reads R1 and R2 are unique and therefore their hash 
values would be added to UniqSet as in Figure 1B. For R3, its hash 
value (111222) is in UniqSet therefore R3 would be considered as 
duplicate read, and it will be discarded. Regarding read R4, the 
read hash value (123123) is not in UniqSet therefore if the reverse 
complement option is not active it will be considered a unique read 
and its hash value would be added to UniqSet as in Figure 1C, but 
if the reverse complement option is active, the hash value of the 
read reverse complement RV4 (101010) is in UniqSet and it will be 
considered as duplicate read and discarded.Finally, the read R5 
hash value (101234) is not in UniqSet and its reverse complement 
hash value (001122) is not in UniqSet. Therefore, if the reverse 
complement option is active or not the read R5 is unique and the 
hash value of it (101234) would be added to UniqSet. Figure 1D 
shows the final UniqSet if the reverse complement option is active 
and Figure 1E if the reverse complement option is not active. Fast-
HBR will not calculate the reverse complement hash unless it is 
necessary, which will minimize computational operations to the 
minimum. On the other hand, since we store only HV1 of unique 
reads in UniqSet, the number of elements in UniqSet will be less 
than or equal to the number of reads in the file. Consequently, the 
memory would be used efficiently, especially because the hash 
values in UniqSet are integers. 
 
Table 1: Properties of the used datasets 
Name Number of reads Layout Size Published 
SRR10315305 99,998,928 SINGLE 3.7GB 6/26/2020 
SRR13555429 308,271,670 SINGLE 22.2GB 3/1/2021 
SRR13555395 524,201,007 SINGLE 28.3GB 3/1/2021 
SRR681003 102,886,046 PAIRED 6.8GB 7/22/2015 
SRR837669 213,967,552 PAIRED 27.4GB 4/18/2014 
SRR6424061 476,540,265 PAIRED 58GB 1/2/2019 

 
Paired-end files: 
For paired-end file processing, Fast-HBR would create a set 
(UniqSet) to store unique hash values. For each pair of reads i (R i1, 
R i2), if the reverse complement removing option is not activated, 
Fast-HBR would calculate the hash value (HV) as the hash of the 
concatenation of the two reads (Hash (R i1 concatenate R i2)). Then, 
if HV is present in UniqSet the reads pair (R i1, R i2) would be 
considered as a duplicate. Otherwise, the reads pair (R i1, R i2) is 
unique and will be written to the output file and HV would be 
added to UniqSet. The second case is when the reverse complement 
removing option is active as shown in Figure 1. Here, the change is 
the calculation of HV. It would be the sum of the hash value of R i1 
plus the hash value of R i2. Therefore, if the pair reads in position 
(i) swapped in other position (j) in the file, they will have the same 
HV value and should be considered as a duplicate. Either with or 
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without the reverse complement removing option, this 
methodology would guarantee that each pair of reads would 
represent by only one integer value. Because of that, the number of 

elements in UniqSet will be less than or equal to the number of 
pairs of reads, which lets Fast-HBR deal with memory more 
efficiently. 

 
Table 2: The number of removed reads in each dataset after applying the tools 
            Tools Number of removed reads 
  
Dataset Fast-HBR Nubeam-dedup Minirmd BioSeqZip NGSReads-Treatment 
SRR10315305 86838679 86838679 69223179 86838679 86838679 
SRR13555429 93616179 93616179 NC* 93616179 NC* 
SRR13555395 221901599 221901599 NC* 221901599 NC* 
SRR681003 21,384,300 21,384,300 21,078,681 21,384,300 NC* 
SRR837669 31,981,762 31,981,762 NC* 31,981,762 NC* 
SRR6424061 40,215,059 40,215,067 NC* 40,215,059 NC* 
*The tool does not complete the processing of the dataset. 
 
Table 3: CPU Time in minutes and Memory in Gigabytes by each tool without reverse complement removing option 
                     Tool Fast-HBR Nubeam-dedup Minirmd BioSeqZip NGSReads-Treatment 
Dataset 
SRR10315305 Time 4.35 6.54 24.52 27.02 486.03 

Memory 3.24 2.11 130.67 13.03 6.35 
SRR13555429 Time 23.21 29.53 NC* 105.2 NC* 

Memory 51.68 34.7 14.27 
SRR13555395 Time 39.12 49.56 NC* 176 NC* 

Memory 84.61 45.14 14.28 
SRR681003 Time 9.72 27.37 6.69 26.48 NC* 

Memory 22.07 28.84 193.2 13.38 
SRR837669 Time 28.34 80.75 NC* 102.38 NC* 

Memory 46.89 61.6 14.39 
SRR6424061 Time 74.45 97.08 NC* 305.55 NC* 

Memory 104.39 141 13.56 
*The tool does not complete the processing of the dataset. 
 
Table 4.CPU Time in minutes and Memory in Gigabytes by each tool with reverse complement removing option 
                                Tool  Fast-HBR Nubeam-dedup Minirmd 
Dataset 
SRR10315305 Time 4.91 5.48 27.82 

Memory 3.24 4.23 130.09 
SRR13555429 Time 38.83 61.4 NC* 

Memory 51.65 69.63 
SRR13555395 Time 50.52 73.77 NC* 

Memory 84.58 90.53 
SRR681003 Time 9.66 46.29 7.24 

Memory 20.97 21.83 193.18 
SRR837669 Time 29.33 88.97 NC* 

Memory 47.18 61.53 
SRR6424061 Time 90.57 NC* NC* 

Memory 105.21 
*The tool does not complete the processing of the dataset. 
 
Results and Discussion: 
Results obtained using Fast-HBR is tabulated in Table 2, Table 3 
and Table 4. Comparisons with NGS Reads Treatment [9], 
Nubeam-dedup [5], BioSeqZip [10] and Minirmd [11] similar state 
of the art De novo tools are shown. The Linux bash command time 
was used to calculate the time spent by each tool and the tool's 
maximum memory usage. In this comparison, six datasets were 
used, three are single-end datasets (SRR10315305, SRR13555429 & 
SRR13555395) and three paired-end datasets (SRR681003, 
SRR837669, SRR6424061) and Table 1 shows the datasets 
information. We run the tools on King Abdulaziz University's High 
Performance Computing Center (Aziz Supercomputer) 
(http://hpc.kau.edu.sa), where all tools run on normal nodes 
which equipped with 24 processors and 96GB memory. Because 
NGS Reads Treatment [9] and BioSeqZip [10] do not support the 
reverse complement removing option, we had to conduct two 

comparisons for each dataset. First, all five tools were compared 
without the reverse complement removing option, and the second 
comparison is only between Fast-HBR, Nubeam-dedup [5] and 
Minirmd [11] while with reverse complement removing option is 
activated. 
 
NGS Reads Treatment [9] with a different number of threads (16, 
24, 32) was very slow and was not able to complete the processing 
of five datasets (SRR13555429, SRR13555395, SRR681003, 
SRR837669, SRR6424061) because it exceeds the limited time for the 
job which is 48 hours. Minirmd [11] consumes a huge amount of 
memory and it failed to complete the processing of four datasets 
(SRR13555429, SRR13555395, SRR837669, SRR6424061) because of a 
memory error. Moreover, Nubeam-dedup [5] was able to process 
all datasets except SRR6424061 when the reverse complement 
removing option is activated because of memory error. On the 
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other hand, Fast-HBR and BioSeqZip [10] were able to process all 
datasets successfully. We note that BioSeqZip [10] has the ability to 
limit the memory usage (default 4GB) and we try to increase its 
memory limit to 16GB, 32GB, and 64GB, but the tool failed to 
complete the process and cause a memory error, therefore, we run 
the tool with its default's memory limit. 
 

 
Figure 2: Processing time for the used datasets without reverse 
complement removing option. 
 
 
Table 2 shows the number of removed reads in each dataset after 
applying the tools. Minirmd [11] was the tool that removed the 
smallest number of duplicated reads. On the other hand, the 
remaining tools were able to remove the same number of 
duplicated reads except for Nubeam-dedup [5] in one dataset 
(SRR6424061) where it considered a slightly a greater number of 
reads as duplicated reads. The results of the tools regarding CPU 
time and memory footprint are tabulated in Table 3 and Table 4. 
Table 3 shows the results when the tools applied on the datasets 
without the reverse complement removing option, where Table 4 
contains the results when the reverse complement removing option 
is activated. 
 

 
Figure 3: Processing time for the used datasets with reverse 
complement removing option. It should be noted that Nubeam-
dedup was not able to complete processing SRR6424061 dataset.  
 

Fast-HBR was the tool with the least CPU time in all single-end 
datasets in either case with or without reverse complement 
removing option. It was able to outperform the tool with the second 
least CPU time by a percentage that varies from 10% to 37%. In the 
paired-end datasets, Fast-HBR was the tool with the least CPU time 
in two of the three datasets and the outperform percentage in these 
two datasets varies from 23% to 67%. Generally, Fast-HBR was the 
tool with the least CPU time in ten out of twelve possible cases of 
processing datasets. Finally, the processing time for the tools when 
reverse complement is not activated is shown in Figure 2 while 
Figure 3 shows the processing time for the tools when reverse 
complement activated and here we should mention that NGS Reads 
Treatment [9] and Minirmd [11] are removed from the figures 
because they were not able to complete most of the datasets.  
 
BioSeqZip [10] consume almost the same memory amount in all 
datasets because of its memory limit control. Therefore, it has a 
smaller memory footprint than Fast-HBR in all datasets except 
SRR10315305. If we exclude BioSeqZip [10] because it caused 
memory error when we try to increase the memory limit, Fast-HBR 
consumes the least memory in all paired-end datasets with or 
without the reverse complement removing option. Moreover, when 
the reverse complement removing option is activated, Fast-HBR has 
the least memory footprint while processing all datasets. By 
comparing each tool's memory consumption when the reverse 
complement is not active (Table 3) and when the reverse 
complement is activated (Table 4), we noted that the amount of 
memory used by the Fast-HBR is almost unchanged whether the 
reverse complement option is enabled or not. On the other hand, 
when the reverse complement option is enabled the memory 
footprint of Nubeam-dedup [5] almost doubled. 
 
Conclusion: 
We describe a de novo tool named Fast-HBR to remove duplicated 
reads in the meta-genomics data to reduce the dataset size which 
will benefit the meta-genomics analyzing pipelines. Fast-HBR 
represents each read to a single integer value by using hashing 
algorithms and hash tables for memory efficiency and speed. Fast-
HBR shows the least computational requirement in validation. The 
CPU time required by it was less than the second-best tool 
Nubeam-dedup [5] by at least 10% and up to 67%. Moreover, Fast-
HBR is the least memory consumption tool in all paired-end 
datasets using the reverse complement removing option.  
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