
ISSN 0973-2063 (online) 0973-8894 (print)
©Biomedical Informatics (2022) Bioinformation 18(1): 36-40 (2022)

36

www.bioinformation.net

Research Article Volume 18(1)
Received November 13, 2021; Revised November 29, 2021; Accepted November 29, 2021, Published January 31, 2022

DOI: 10.6026/97320630018036
Declaration on Publication Ethics:
The author’s state that they adhere with COPE guidelines on publishing ethics as described elsewhere at https://publicationethics.org/.
The authors also undertake that they are not associated with any other third party (governmental or non-governmental agencies) linking
with any form of unethical issues connecting to this publication. The authors also declare that they are not withholding any information
that is misleading to the publisher in regard to this article.

Declaration on official E-mail:
The corresponding author declares that official e-mail from their institution is not available for all authors

License statement:
This is an Open Access article which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly credited. This is distributed under the terms of the Creative Commons Attribution License

Comments from readers:
Articles published in BIOINFORMATION are open for relevant post publication comments and criticisms, which will be published
immediately linking to the original article without open access charges. Comments should be concise, coherent and critical in less than 1000
words.

Edited by Pandjassarame Kangueane

Citation: Altayyar & Monim Artoli, Bioinformation 18(1): 36-40 (2022)

Fast-HBR: Fast hash based duplicate read remover

Sami Altayyar* & Abdel Monim Artoli

Department of Computer Science, College of Computer and Information Sciences, King Saud University, P.O. Box 51178, Riyadh 11543,
Saudi Arabia, E-mail:436107303@student.ksu.edu.sa , aartoli@ksu.edu.sa; *Corresponding author

Abstract:
The Next-Generation Sequencing (NGS) platforms produce massive amounts of data to analyze various features in environmental samples.
These data contain multiple duplicate reads which impact the analyzing process efficiency and accuracy. We describe Fast-HBR, a fast and
memory-efficient duplicate reads removing tool without a reference genome using de-novo principles. It uses hash tables to represent reads
in integer value to minimize memory usage for faster manipulation. Fast-HBR is faster and has less memory footprint when compared with
the state of the art De-novo duplicate removing tools. Fast-HBR implemented in Python 3 is available at https://github.com/Sami-
Altayyar/Fast-HBR.

Background:
The number of the publicly available NGS projects tripled from
1200 in 2017 to 3500 in 2020 [1-2]. Therefore, preprocessing of data
is essential to reduce the size of the data with an adequate level of
data quality [3]. One of the preprocessing steps that reduce the
dataset size is removing duplicate reads in the dataset. This step is

essential for sequence-based algorithms since duplicate reads affect
the algorithm accuracy [4]. Removing duplicate reads may reduce
the assembly algorithms consumption of RAM [5]. Duplicate reads
removal tools are either reference based or de novo. Some examples
of de novo tools are CD-HIT [6], FastUniq [7] and Fulcrum [8].
Available de novo tools include NGS Reads Treatment [9], Nubeam-

ISSN 0973-2063 (online) 0973-8894 (print)
©Biomedical Informatics (2022) Bioinformation 18(1): 36-40 (2022)

37

dedup [5], BioSeqZip [10] and Minirmd [11]. NGS Reads Treatment
[9] is a hash-based tool that uses Cuckoo Filter [12] which is a
probabilistic data structure. The authors elsewhere [5] developed
the Nubeam-dedup tool that uses Nubeam [13] to represent each
read as a number by calculating a product of matrices that
represent nucleotides in the read. The BioSeqZip [10] tool starts by
splitting the reads into small chunks, and then it sorts them
alphabetically with memory limiting feature having long
processing time. Minirmd [11] with the help of k-minimizer [14]
clusters the reads into groups, where each group will contain reads
that have the same k-minimizer in the same position. Therefore, it is
of interest to describe Fast-HBR, a fast and memory-efficient
duplicate reads removing tool without a reference genome using
de-novo principles.

Figure 1: Fast-HBR methodology illustrated using an example.

Methodology:
Fast-HBR is implemented in Python 3. Therefore, it is platform-
independent. The source code is available at
https://github.com/Sami-Altayyar/Fast-HBR. It uses Python's
built-in hash function to represent reads (in nucleotide or amino
acid level) as an integer value. The reads hash value is stored in a
set and each new read hash value will compare to the set items to
decide if it is duplicate or not. The input files are either a single-end
or paired-end, and it could process the files with reverse
complement removing option or without it.

Single-end files:
In single-end files, each read is independent; therefore its
evaluation process will depend only on its hash value. Fast-HBR
will starts by creating a set (UniqSet) to store all unique hash
values. After that, it extracts from the input file one read at a time
and then calculate the hash value (HV1) of the read. Depending on
HV1 and the reverse complement removing option, Fast-HBR will
have three cases. In the first case, if HV1 is in UniqSet, the read will
consider a duplicate and will be discarded. In the second case, if
HV1 is not in UniqSet and the reverse complement removing
option is not activated, then HV1 will be added to UniqSet and the

read will be written in the output file. In the third case, if HV1 is not
in UniqSet and the reverse complement removing option is
activated, Fast-HBR will calculate the hash value of the reverse
complement of the read (HV2). If HV2 is in UniqSet the read will
consider a duplicate and will be discarded. Otherwise, the read is
unique and then only HV1 will be added to UniqSet and the read
will be written in the output file.

We consider the input reads and their reverse and the hash values
for the reads and the reverse as shown in Figure 1A. In the
beginning, the reads R1 and R2 are unique and therefore their hash
values would be added to UniqSet as in Figure 1B. For R3, its hash
value (111222) is in UniqSet therefore R3 would be considered as
duplicate read, and it will be discarded. Regarding read R4, the
read hash value (123123) is not in UniqSet therefore if the reverse
complement option is not active it will be considered a unique read
and its hash value would be added to UniqSet as in Figure 1C, but
if the reverse complement option is active, the hash value of the
read reverse complement RV4 (101010) is in UniqSet and it will be
considered as duplicate read and discarded.Finally, the read R5
hash value (101234) is not in UniqSet and its reverse complement
hash value (001122) is not in UniqSet. Therefore, if the reverse
complement option is active or not the read R5 is unique and the
hash value of it (101234) would be added to UniqSet. Figure 1D
shows the final UniqSet if the reverse complement option is active
and Figure 1E if the reverse complement option is not active. Fast-
HBR will not calculate the reverse complement hash unless it is
necessary, which will minimize computational operations to the
minimum. On the other hand, since we store only HV1 of unique
reads in UniqSet, the number of elements in UniqSet will be less
than or equal to the number of reads in the file. Consequently, the
memory would be used efficiently, especially because the hash
values in UniqSet are integers.

Table 1: Properties of the used datasets
Name Number of reads Layout Size Published
SRR10315305 99,998,928 SINGLE 3.7GB 6/26/2020
SRR13555429 308,271,670 SINGLE 22.2GB 3/1/2021
SRR13555395 524,201,007 SINGLE 28.3GB 3/1/2021
SRR681003 102,886,046 PAIRED 6.8GB 7/22/2015
SRR837669 213,967,552 PAIRED 27.4GB 4/18/2014
SRR6424061 476,540,265 PAIRED 58GB 1/2/2019

Paired-end files:
For paired-end file processing, Fast-HBR would create a set
(UniqSet) to store unique hash values. For each pair of reads i (R i1,
R i2), if the reverse complement removing option is not activated,
Fast-HBR would calculate the hash value (HV) as the hash of the
concatenation of the two reads (Hash (R i1 concatenate R i2)). Then,
if HV is present in UniqSet the reads pair (R i1, R i2) would be
considered as a duplicate. Otherwise, the reads pair (R i1, R i2) is
unique and will be written to the output file and HV would be
added to UniqSet. The second case is when the reverse complement
removing option is active as shown in Figure 1. Here, the change is
the calculation of HV. It would be the sum of the hash value of R i1
plus the hash value of R i2. Therefore, if the pair reads in position
(i) swapped in other position (j) in the file, they will have the same
HV value and should be considered as a duplicate. Either with or

ISSN 0973-2063 (online) 0973-8894 (print)
©Biomedical Informatics (2022) Bioinformation 18(1): 36-40 (2022)

38

without the reverse complement removing option, this
methodology would guarantee that each pair of reads would
represent by only one integer value. Because of that, the number of

elements in UniqSet will be less than or equal to the number of
pairs of reads, which lets Fast-HBR deal with memory more
efficiently.

Table 2: The number of removed reads in each dataset after applying the tools
 Tools Number of removed reads

Dataset Fast-HBR Nubeam-dedup Minirmd BioSeqZip NGSReads-Treatment
SRR10315305 86838679 86838679 69223179 86838679 86838679
SRR13555429 93616179 93616179 NC* 93616179 NC*
SRR13555395 221901599 221901599 NC* 221901599 NC*
SRR681003 21,384,300 21,384,300 21,078,681 21,384,300 NC*
SRR837669 31,981,762 31,981,762 NC* 31,981,762 NC*
SRR6424061 40,215,059 40,215,067 NC* 40,215,059 NC*
*The tool does not complete the processing of the dataset.

Table 3: CPU Time in minutes and Memory in Gigabytes by each tool without reverse complement removing option
 Tool Fast-HBR Nubeam-dedup Minirmd BioSeqZip NGSReads-Treatment
Dataset
SRR10315305 Time 4.35 6.54 24.52 27.02 486.03

Memory 3.24 2.11 130.67 13.03 6.35
SRR13555429 Time 23.21 29.53 NC* 105.2 NC*

Memory 51.68 34.7 14.27
SRR13555395 Time 39.12 49.56 NC* 176 NC*

Memory 84.61 45.14 14.28
SRR681003 Time 9.72 27.37 6.69 26.48 NC*

Memory 22.07 28.84 193.2 13.38
SRR837669 Time 28.34 80.75 NC* 102.38 NC*

Memory 46.89 61.6 14.39
SRR6424061 Time 74.45 97.08 NC* 305.55 NC*

Memory 104.39 141 13.56
*The tool does not complete the processing of the dataset.

Table 4.CPU Time in minutes and Memory in Gigabytes by each tool with reverse complement removing option
 Tool Fast-HBR Nubeam-dedup Minirmd
Dataset
SRR10315305 Time 4.91 5.48 27.82

Memory 3.24 4.23 130.09
SRR13555429 Time 38.83 61.4 NC*

Memory 51.65 69.63
SRR13555395 Time 50.52 73.77 NC*

Memory 84.58 90.53
SRR681003 Time 9.66 46.29 7.24

Memory 20.97 21.83 193.18
SRR837669 Time 29.33 88.97 NC*

Memory 47.18 61.53
SRR6424061 Time 90.57 NC* NC*

Memory 105.21
*The tool does not complete the processing of the dataset.

Results and Discussion:
Results obtained using Fast-HBR is tabulated in Table 2, Table 3
and Table 4. Comparisons with NGS Reads Treatment [9],
Nubeam-dedup [5], BioSeqZip [10] and Minirmd [11] similar state
of the art De novo tools are shown. The Linux bash command time
was used to calculate the time spent by each tool and the tool's
maximum memory usage. In this comparison, six datasets were
used, three are single-end datasets (SRR10315305, SRR13555429 &
SRR13555395) and three paired-end datasets (SRR681003,
SRR837669, SRR6424061) and Table 1 shows the datasets
information. We run the tools on King Abdulaziz University's High
Performance Computing Center (Aziz Supercomputer)
(http://hpc.kau.edu.sa), where all tools run on normal nodes
which equipped with 24 processors and 96GB memory. Because
NGS Reads Treatment [9] and BioSeqZip [10] do not support the
reverse complement removing option, we had to conduct two

comparisons for each dataset. First, all five tools were compared
without the reverse complement removing option, and the second
comparison is only between Fast-HBR, Nubeam-dedup [5] and
Minirmd [11] while with reverse complement removing option is
activated.

NGS Reads Treatment [9] with a different number of threads (16,
24, 32) was very slow and was not able to complete the processing
of five datasets (SRR13555429, SRR13555395, SRR681003,
SRR837669, SRR6424061) because it exceeds the limited time for the
job which is 48 hours. Minirmd [11] consumes a huge amount of
memory and it failed to complete the processing of four datasets
(SRR13555429, SRR13555395, SRR837669, SRR6424061) because of a
memory error. Moreover, Nubeam-dedup [5] was able to process
all datasets except SRR6424061 when the reverse complement
removing option is activated because of memory error. On the

ISSN 0973-2063 (online) 0973-8894 (print)
©Biomedical Informatics (2022) Bioinformation 18(1): 36-40 (2022)

39

other hand, Fast-HBR and BioSeqZip [10] were able to process all
datasets successfully. We note that BioSeqZip [10] has the ability to
limit the memory usage (default 4GB) and we try to increase its
memory limit to 16GB, 32GB, and 64GB, but the tool failed to
complete the process and cause a memory error, therefore, we run
the tool with its default's memory limit.

Figure 2: Processing time for the used datasets without reverse
complement removing option.

Table 2 shows the number of removed reads in each dataset after
applying the tools. Minirmd [11] was the tool that removed the
smallest number of duplicated reads. On the other hand, the
remaining tools were able to remove the same number of
duplicated reads except for Nubeam-dedup [5] in one dataset
(SRR6424061) where it considered a slightly a greater number of
reads as duplicated reads. The results of the tools regarding CPU
time and memory footprint are tabulated in Table 3 and Table 4.
Table 3 shows the results when the tools applied on the datasets
without the reverse complement removing option, where Table 4
contains the results when the reverse complement removing option
is activated.

Figure 3: Processing time for the used datasets with reverse
complement removing option. It should be noted that Nubeam-
dedup was not able to complete processing SRR6424061 dataset.

Fast-HBR was the tool with the least CPU time in all single-end
datasets in either case with or without reverse complement
removing option. It was able to outperform the tool with the second
least CPU time by a percentage that varies from 10% to 37%. In the
paired-end datasets, Fast-HBR was the tool with the least CPU time
in two of the three datasets and the outperform percentage in these
two datasets varies from 23% to 67%. Generally, Fast-HBR was the
tool with the least CPU time in ten out of twelve possible cases of
processing datasets. Finally, the processing time for the tools when
reverse complement is not activated is shown in Figure 2 while
Figure 3 shows the processing time for the tools when reverse
complement activated and here we should mention that NGS Reads
Treatment [9] and Minirmd [11] are removed from the figures
because they were not able to complete most of the datasets.

BioSeqZip [10] consume almost the same memory amount in all
datasets because of its memory limit control. Therefore, it has a
smaller memory footprint than Fast-HBR in all datasets except
SRR10315305. If we exclude BioSeqZip [10] because it caused
memory error when we try to increase the memory limit, Fast-HBR
consumes the least memory in all paired-end datasets with or
without the reverse complement removing option. Moreover, when
the reverse complement removing option is activated, Fast-HBR has
the least memory footprint while processing all datasets. By
comparing each tool's memory consumption when the reverse
complement is not active (Table 3) and when the reverse
complement is activated (Table 4), we noted that the amount of
memory used by the Fast-HBR is almost unchanged whether the
reverse complement option is enabled or not. On the other hand,
when the reverse complement option is enabled the memory
footprint of Nubeam-dedup [5] almost doubled.

Conclusion:
We describe a de novo tool named Fast-HBR to remove duplicated
reads in the meta-genomics data to reduce the dataset size which
will benefit the meta-genomics analyzing pipelines. Fast-HBR
represents each read to a single integer value by using hashing
algorithms and hash tables for memory efficiency and speed. Fast-
HBR shows the least computational requirement in validation. The
CPU time required by it was less than the second-best tool
Nubeam-dedup [5] by at least 10% and up to 67%. Moreover, Fast-
HBR is the least memory consumption tool in all paired-end
datasets using the reverse complement removing option.

Acknowledgements:
The authors would like to thank Deanship of scientific research in
King Saud University for funding and supporting this research
through the initiative of DSR Graduate Students Research Support
(GSR).

Conflict of Interest:
The authors declare no conflict of interest.

References:

[1] Mitchell AL et al. Nucleic Acids Research 2018 46:D726
[PMID: 29069476].

ISSN 0973-2063 (online) 0973-8894 (print)
©Biomedical Informatics (2022) Bioinformation 18(1): 36-40 (2022)

40

[2] Mitchell AL et al. Nucleic Acids Research 2020 48:D570
[PMID: 31696235].

[3] Exposito RR et al. Bioinformatics 2017 33:2762 [PMID:
28475668].

[4] Manconi A et al. BMC Bioinformatics 2016 17:346 [PMID:
28185553].

[5] Dai H & Guan Y, Bioinformatics 2020 36:3254 [PMID:
32091581].

[6] Li W & Godzik A, Bioinformatics 2006 22:1658 [PMID:
16731699].

[7] Xu H et al. PloS One 2012 7:e52249 [PMID: 16731699].

[8] Burriesci MS et al. Bioinformatics 2012 28:1324 [PMID:
23284954].

[9] Gaia ASC et al. Scientific Reports 2019 9:1 [PMID: 31406180].
[10] Urgese G et al. Bioinformatics 2020 36:2705 [PMID:

31999333].
[11] Liu Y et al. Bioinformatics 2021 37:1604 [PMID: 33112385].
[12] Pagh R & Rodler FF, Journal of Algorithms 2004 51:122–144.
[13] Dai H & Guan Y, BioRxiv 2019 763631.
[14] Roberts M et al. Bioinformatics 2004 20:3363. [PMID:

15256412]

	Background:
	Single-end files:
	Paired-end files:

	Results and Discussion:
	Conclusion:
	Acknowledgements:
	References:

