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Abstract: 
Neo-antigens presented on cell surface play a pivotal role in the success of immunotherapies. Peptides derived from mutant proteins are 
thought to be the primary source of neo-antigens presented on the surface of cancer cells. Mutation data from cancer genome sequencing is 
often used to predict cancer neo-antigens. However, this strategy is associated with significant false positives as many coding mutations 
may not be expressed at the protein level.  Hence, we describe a computational workflow to integrate genomic and proteomic data to 
predictpotential neo-antigens.  
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Background: 
Cancer is the second leading cause of morbidity and mortality 
worldwide. As per a survey conducted by Cancer Research UK in 
2018, there are 17 million new cases worldwide, and cancer-related 
death has risen to 9.6 million [1]. Cancer is heterogeneous. As 
cancer cells proliferate, they create tumors with genetically 
heterogeneous cells making it challenging to treat [2], [3]. 
Chemotherapy and targeted therapies are effective only in select 
cancer types. The advent of immunotherapy has revolutionized 
cancer treatment in the last decade [4]. For example, checkpoint 
blockade-based treatments have significantly improved cancer 
survival [5], [6]. Other immunotherapy treatments such as adoptive 
cell transfer therapy and small molecule inhibitors are widely used 
to treat various cancer types [7], [8]. The success of immunotherapy 
strategies is dependent on presentation of neo-antigens on cancer 
cell surface. These neo-antigens are presented by MHC complex on 
the cell surface, which are recognized by T cells [9]. Cancer genome 
sequencing has revealed thousands of mutations associated with 
various cancers [10], [11], [12]. Mutation data from cancer genome 
sequencing is often used to predict cancer neo-antigens. However, 
this approach can result in false positives as many mutations may 
not be expressed at the protein level [13], [14]. We previously 
developed a computational workflow to integrate genomic and 
proteomic data to identify coding variations [15]. Therefore, we 
describe a workflow to predict cancer neo-antigens. 
 
Methods: 
Genomics and proteomics data analysis: 
Genomics datasets [18], [19], [20], [21] were analyzed using the 
CusVarDB tool. A custom protein database was developed by 
incorporating coding mutations that was used to carry out 
proteomics searches. Proteomeics searches were carried out using 
Proteome Discoverer 2.3 (Thermo Fisher Scientific, Bremen, and 
Germany). The cancer type-specific raw files were searched against 
the corresponding customized variant protein database using 
Sequest-HT search engine [22]. The search parameters were set as 
reported in the original studies [23], [24], [25]. False discovery rate 
(FDR) was set to 1% at PSM, peptide, and protein levels. (Figure 1-
a) describes the proteogenomics workflow used in our study. 
 
Workflow development: 
The workflow is created using snakemake version 6.12.3 [16]. All 
the supporting scripts for the workflow are written in Python 3.9. 
This snakemake workflow requires variant annotation results from 

ANNOVAR [17] and proteomics search results. Proteomics data is 
searched against a custom database that incorporates coding 
mutations identified in genomics data. Peptides that do not have 
sequence variations are filtered by mathching sequences to 
reference protein sequence database. Variant peptides are assigned 
unique accessions and are provided as a tab-delimited or comma-
separated file that can be queried using SQL. 
 
Prediction of neoantigens: 
Neoantigen prediction was performed using offline version of net 
MHCpan 4.1 [26]. We kept a window of ± 15 amino acid sequence 
from the variant amino acid. It created an overall sequence length 
of 30 amino acids. These sequences were stored in FASTA format to 
perform predictions. HLA allele information for corresponding cell 
lines was taken from the literature [27], [28], and Expasy 
(https://web.expasy.org/cellosaurus/).  
 
Code availability: 
Workflow is available at Github 
(https://github.com/sandeepkasaragod/Proteogenomics_workflo
w) 
 
Table 1: List of proteomics and genomics datasets used in the present study. 
Sl. No Cell lines Cancer type Genomics Proteomics 

1 BT20 TNBC SRR925751 PXD008222 
2 BT474 TNBC SRR925752 PXD008222 
3 BT549 TNBC SRR925754 PXD008222 
4 HCC1143 TNBC SRR925765 PXD008222 
5 HCC1806 TNBC SRR925771 PXD008222 
6 HCC1937 TNBC SRR925772 PXD008222 
7 HCC38 TNBC SRR925778 PXD008222 
8 HCC70 TNBC SRR925780 PXD005295 
9 MDAMB157 TNBC SRR925788 PXD008222 

10 MDAMB231 TNBC SRR925790 PXD008222 
11 MDAMB468 TNBC SRR925794 PXD008222 
12 SKBR3 TNBC SRR925800 PXD008222 
13 SUM229 TNBC SRR925807 PXD005295 
14 T47D TNBC SRR925811 PXD005390 
15 COLO-205 Colon SRR7366613 PXD005946 
16 HCT-116 Colon SRR7366622 PXD005946 
17 HCT-15 Colon SRR7366619 PXD005946 
18 HT29 Colon SRR1232556 PXD005946 
19 KM-12 Colon SRR7366594 PXD005946 
20 SW-620 Colon SRR7366632 PXD005946 
21 OVCAR-3 Ovarian SRR7366635 PXD005946 
22 OVCAR-4 Ovarian SRR8657373 PXD005946 
23 OVCAR-5 Ovarian SRR7366581 PXD005946 
24 OVCAR-8 Ovarian SRR7366617 PXD005946 
25 SK-OV-3 Ovarian SRR8657598 PXD005946 
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Figure 1: Schematic representation of the execution workflow (A). Number of variant peptides identified in each sample (B). Cluster 
profiler analysis on neoantigen peptides reveals their involvement in various cancer types (C). Gene enrichment analysis results in 
identification of key cellular components and processes. 
 
Results and Discussion: 
Our study was carried out using datasets from twenty-five cancer 
cell lines. Fourteen datasets were from TNBC, five from ovarian 
cancer, and six from colon cancer. The exome datasets were 
subjected to variant analysis. We identified 125,687 unique non-
synonymous variants from 25 datasets. Non-synonymous variants 
were incorporated into protein sequences from RefSeq database to 
create a custom variant protein database to perform proteomics 
data analysis. Proteomics searches identified 231,886 unique 
peptides from 25 datasets. Overall, we identified 4,673 variant 
peptides corresponding to 1,249 genes (Figure 1b). We also 
identified 1,297 variants that correspond to 295 genes reported in 
COSMIC [29] and ClinVar [30]. These include well-known cancer-
related genes such as TP53, KRAS, EGFR, AARS, ACTN4, 
SAMHD1, and many other genes. Enrichment analysis showed 
genes involved in important functions including cell division, 
cellular metabolic process, cellular localization, and other events. 
(Figure 1d). The same set of peptides was run on Net MHCpan for 
neoantigen prediction. We identified a total of 5,865 neoantigens 
with strong binding affinity. We also identified corresponding wild 
type peptides for 1,915 variant peptides. We predicted binding 
affinity for corresponding wild type peptides. Of these, 707 variant 
peptides had a stronger binding affinity when compared to their 
wild type (supplementary available at GitHub). Cluster Profiler 

analysis of these variant proteins showed their involvement in 
various cancers including breast cancer, colorectal adenocarcinoma 
and cervical cancer (Figure 1c). In this study, we utilized the power 
of multi-omics datasets to predict potential cancer neo-antigens. We 
developed a proteogenomics data analysis workflow using 
snakemake package. The workflow is highly customizable and 
efficiently executed in a condo environment. 
 
Conclusions: 
Identification of cancer neoantigens is important to develop 
effective immunotherapy strategies. Predicting cancer neoantigens 
using genomic data alone can result in several false positives. In 
this study, we present an integrated approach combining genomic 
and proteomic data to predict cancer neoantigens. This 
computational workflow can be used on any dataset where both 
genomic and proteomic data is available.  
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