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Abstract: 
We describe a multi parametric-approach, YAPPIS-Finder, for predicting the PPI sites on protein surface. A non-redundant database 
of comprised of 2,265 protein-protein interaction interfaces (PPIIs) involving 4,530 protein-protein interacting partners (PPIPs) and 
depicting the interaction between protein-chains of experimentally determined PPCs was used in designing the YAPPIS-Finder. 
Parametric score obtained on analyzing these 4,530 PPIPs with respect to their residue interface propensity, their hydrophobic content, 
and amount of solvation free energy associated with them provided the basis of YAPPIS-Finder. By applying YAPPIS-Finder on 
another dataset 4,290 PPIPs from 2,145 PPIIs, the optimal range of the parametric scores and protein-probe van der Waals energy of 
interaction was determined. Subsequently, taking the optimal range of PPIP parametric scores and threshold for protein-probe van der 
Waals energy of interaction into the consideration, the YAPPIS-Finder was tested on a blind dataset of 554 protein-chains and it was 
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found predicting 69.67% sites correctly. On predicting only one PPI site on each protein-chain, the YAPPIS-Finder found covering 
22.91% of actually sites in the predicted site. Contrary to this, the sites predicted by SPPIDER covered 22.7% of actual sites. However, 
on predicting two PPI sites for each protein-chain, the percentage coverage of actual sites in the predicted sites by YAPPIS-Finder 
exceeded two-fold (i.e. 41.81%), thus making the YAPPIS-Finder a better method. 
 
Keywords: YAPPIS-Finder, protein-protein interaction site, predictions 

 
Background: 
Proteins are the basic functional unit in cellular world of life [1]. 
They are genetically programmed to enact an array of molecular 
functions in response to biological events at cellular and system 
levels [2, 3]. The unquestionable roles that proteins play in 
executing various intra- and extra-cellular processes such as cell 
proliferation, differentiation, apoptosis, and signal transduction 
have drawn the attention of the scientific community to get their 
structural and functional insights. In various studies, the efficacy 
of proteins in the cellular environment is reported to be of short-
range and inadequate to sustain life in isolation [4]. More often, 
proteins interactively associate with other bio-molecules to form 
supramolecular assemblies responsible for molecular functioning 
in living organisms. Understanding the molecular phenomenon 
that triggers and maintains the complexity of such associations 
may improve the application of protein chemistry. Formation of 
protein-protein complexes (PPCs) are the outcome of one of such 
molecular association in which the interaction between two 
proteins is governed by formation of covalent and non-covalent 
associations between them [5, 6] . The covalent PPIs, although 
rare to see, are owed to sharing of electrons between the protein 
constituents [7]. While in the case of non-covalent interactions, 
formation of hydrogen bonds, ionic interactions, van der Waals 
interactions, or hydrophobic bonds, are the main contributing 
factors for proteins complexation [8]. The presence of such 
binding factors help in associating two proteins, thereby, assists 
in maintenance of life. Therefore, development of an approach 
emphasizing on the protein dynamics in context of preference of 
binding partners, binding site location, functionality concomitant 
with the formed protein complexes, is the need of hour. Despite 
the availability of experimental techniques for identification of 
PPIs in abundance [9] [10] [11] recognition of binding sites for 
proteins like Wnt [12,13] (or similar hydrophobic protein) and 
Hedgehog [14] (membrane proteins), even though very much 
crucial, is difficult. Additionally, relatively high experimental 
cost and time-intensiveness nature of experimental techniques 
makes them less apt for application en masse. Therefore, 
development and application of computational methods, which 
are free from such problems, are growing rapidly. In the 
proposed work, we have presented an approach named Yet 
Another Protein Protein Interaction Site-Finder (YAPPIS-Finder) 
for predicting the PPI sites on protein surface. A non-redundant 
database of comprised of 2,265 PPIIs (or 4,530 PPIPs) depicting 
the interaction sites between two protein-chains of 
experimentally determined PPCs was used in designing YAPPIS-
Finder. Analysis of these 4,530 PPIPs was carried out to 
understand the PPI sites with respect to their residue interface 
propensity, their hydrophobic content, and amount of solvation 
free energy associated with them. Another dataset of 2,145 PPIIs 
(4,290 PPIPs) was used to train the proposed approach and 
subsequently the optimal range of PPIPs parametric scores was 
derived. The approach was tested on a blind dataset of 554 
protein-chains and its performance was also compared with the 
SPPIDER. [15]  
 
Materials and Methods: 
A non-redundant database protein-protein interaction interfaces 
(NRDB)[16] depicting the actual PPI sites was analyzed with 
respect to residue interface propensity (RIP), hydrophobicity and 

solvation free energy to design the proposed computational 
approach for PPI sites prediction. 
 
Non-redundant database of protein-protein interaction 
interfaces (NRDB) depicting actual interfaces: 
A non-redundant database of PPIIs [17] demarcated from 
experimentally determined PPCs was used in proposed study. 
NRDB was designed considering the PDBs for which the 
information of structural classification of protein was available in 
the last manually curated SCOP version 1.75. In NRDB, the 
information of interacting interface was determined by 
considering the interatomic distance between the constituting 
atoms of two protein-chains in a PPC. Two atoms belonging to 
two different protein-chains of a PPC were said to be in contact 
and demarcated as an atomic contact pair (ACP) if the 
intervening distance between them was less than the sum of their 
van der Waals radii plus 1 Å as tolerance factor (Figure 1). The 
collection of ACPs between a pair of interacting protein-chains 
was referred as “Protein-Protein Interaction Interface” (PPII) and 
the collection of interacting atoms from individual interacting 
protein-chain were termed as the “Protein-Protein Interacting 
Patch” (PPIP). Only the PPIIs with at least 20 ACPs were retained 
in the NRDB and a total of 2,265 PPIIs (4,530 PPIPs) from 1,931 
PDB files were demarcated. These 2,265 PPIIs were representing 
43,509 PPIIs and the same number of SCOP super family pairs.  
 

 
Figure 1: Definition of atomic contact pair (ACP) 
 
Analysis of PPIPs with respect to residue interface propensity 
(RIP) 
All of the PPIPs from NRDB [16] were examined with respect to 
RIP and the cumulative RIP score for each PPIP was carried out 
by taking into the account the RIP scores of individual residues 
derived in our unpublished work. For each interacting atom in a 
PPIP, its individual RIP score was calculated by dividing the 
overall RIP score of the residue by number of atoms the residue, 
whose this interacting atoms is a part, does normally have 
(ignoring the atoms involved in peptide bond formation). This 
was followed by the summation of individual RIP score of all 
interacting atoms in the PPII to represent the cumulative RIP 
score of the PPIP (Eq. 1). 

 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃Ԉ = ∑ 𝑛𝑛𝑖𝑖 ∗ Ԉ𝑖𝑖

𝑛𝑛
𝑖𝑖=1    Eq. 1 

 
Where n represents the total number of interacting atoms in the 
PPIP, 𝑛𝑛𝑖𝑖  represents current interacting atom, and Ԉ𝑖𝑖  represents 
the per-atom RIP of the residue under consideration. 
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Analysis of PPIPs with respect to hydrophobicity: 
To determine the level of hydrophobicity (Ф) associated with 
PPIPs, the hydrophobicity scale for amino acids given by Hessa et 
al. 2005 was used [18]. For each interacting atom in the PPIP, its 
corresponding hydrophobicity score was obtained by dividing 
the overall residue hydrophobicity score by number of atoms the 
residue, whose this interacting atom is a part, does normally have 
(ignoring the atoms involved in peptide bond formation). At last, 
the hydrophobicity score of all interacting atoms in the PPIP was 
summed up in linear fashion to represent the hydrophobicity 
score of the PPIP (Eq. 2) 
 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃Ф = ∑ 𝑛𝑛𝑖𝑖 ∗Ф𝑖𝑖

20
𝑖𝑖=1     Eq. 2 

 
Where 𝑛𝑛𝑖𝑖  represents the total number of atoms from amino acid i 
involved in interaction and Ф𝑖𝑖  represents the per-atom 
hydrophobicity score of amino acid under consideration.  
 
Analysis of PPIPs with respect to solvation free energy: 
The solvation free energy of PPIP was calculated by taking into 
account the solvation energy scale for amino acids given by [19] 
White et al, 1996 for each interacting atom in PPIP, its 
corresponding solvation free energy score was calculated by 
dividing the overall solvation free energy of the residue by 
number of atoms the residue, whose this interacting atoms is a 
part, does normally have (ignoring the atoms involved in peptide 
bond formation). This was followed by the summation of 
solvation free energy score of all interacting atoms in the PPII to 
represent the solvation energy score of the PPIP (Eq. 3). 
 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝜔𝜔 = ∑ 𝑛𝑛𝑖𝑖 ∗ 𝜔𝜔𝑖𝑖

20
𝑖𝑖=1    Eq. 3 

 
Where 𝑛𝑛𝑖𝑖  represents the total number of atoms from amino acid i 
observed to be interacting in a PPIP and 𝜔𝜔𝑖𝑖  represents the per-
atom solvation free energy score of residue under consideration. 
 
Removal of outliers from the parametric scores of PPIPs and 
decomposition of parametric scores into sub-ranges:  
The parametric scores obtained on analyzing the PPIPs from 
NRDB were set to provide foundation for the proposed scheme. 
However, the NRDB analysis revealed that the parametric scores 
for PPIPs contained a significant number of outliers in them. 
Therefore, a statistical approach of inter quartile range was 
adopted to remove the outliers. After outlier removal, the entire 
range of parametric score for each PPI sites parameter was 
divided into a number of bins with width calculated using Scott’s 
rule (Eq. 4). 
 
𝑊𝑊 = 3.49 ∗ 𝜎𝜎 ∗ 𝑁𝑁

−1
3     Eq. 4 

 
Where 𝑊𝑊 is the width of the bin, 𝜎𝜎 is the standard deviation of 
the distribution of parametric scores, and 𝑁𝑁 is the total number of 
PPIPs for which parametric scores was available. 
 
Creation of the training and test dataset to implement the 
proposed approach: 
Success of any prediction tool largely depends of quality of the 
datasets used in its designing. The dataset should be comprised 
of information related to both known interacting protein pairs 
(positive set) and non-interacting protein pairs (negative set). It is 
quite easy to obtain the experimental instances of PPI for the 
positive set while construction of negative set is not that much 
straightforward. In the proposed study, to develop a 
computational approach for PPI prediction, one training and one 
test set was designed considering the presence or absence of 
SCOP superfamily pair in NRDB proposed by our research group 
previously [17]. To design the training set, the SCOP [20, 21] 

superfamily pairs with their corresponding PPIIs in the NRDB 
were taken into the account. However, to remove the overlap 
between the NRDB and training set, for each SCOP [20, 21] 
superfamily pair covered in NRDB, a new PPII representative 
was selected from PPInS [17]. If there were more than one PPII 
available for a SCOP superfamily pair in PPInS, then the PPII 
with the largest number of ACPs was selected. If the PPII with 
the largest number of ACPs was the one which was already a 
part of NRDB [16] , then the PPII with second largest number of 
ACPs was selected for the training set. Following this strategy, a 
total of 2,145 PPIIs from 1,896 PDBs were selected as training set.  
 
To design the test set, the SCOP superfamily pairs which were 
not covered in NRDB [16] were selected. For each such SCOP 
superfamily pair, the PPII with the largest number of ACPs was 
selected from PPInS as a part of the test set. In this way, no room 
was left for overlap between the training and test set and a total 
of 554 binary PPIIs from 277 PDBs were selected as test set. 
 
Implementation of YAPPIS-Finder: 

 
Figure 2: YAPPIS-Finder algorithm 
 
(i) Overview: The implementation of the proposed 
computational approach was completed in two phases; training 
and testing phase. During training phase, initially, using all of the 
PPIIs involved in NRDB [16] , the optimal range of PPI sites’ 
parametric scores was calculated. The obtained ranges were then 
decomposed into multiple sub-ranges (called domains) using the 
method of interquartile range. This was followed by examining 
the surface of unbounded proteins extracted from the 
experimentally determined PPCs contained in training dataset. 
Taking two parameters at a time and their corresponding domain 
scores one at a time along with the threshold for protein-probe 
van der Waals energy of interaction, the protein surface was 
examined using an energy-based grid-oriented approach. The 
group of atoms with parametric scores within the range of 
current domain and protein-probe van der Waals interaction 
energy threshold were clustered into 15 clusters (created 
considering the spatial proximity of predicted interacting atoms). 
The obtained clusters were recognized as possible PPI sites and a 
predicted site score (Ƭ) representing the precision and coverage of 
predicted PPI sites against the actual sites was also calculated for 
each of them.  
 
P𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑟𝑟𝑖𝑖𝑟𝑟𝑛𝑛 = 𝑁𝑁𝑃𝑃

𝑁𝑁𝐴𝐴+𝑁𝑁𝑃𝑃−𝑁𝑁𝐶𝐶
     Eq. 5 

 
C𝑟𝑟𝑜𝑜𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑟𝑟 = 𝑁𝑁𝐴𝐴

𝑁𝑁𝐴𝐴+𝑁𝑁𝑃𝑃−𝑁𝑁𝐶𝐶
    Eq. 6 

 
Ƭ = 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑟𝑟𝑖𝑖𝑟𝑟𝑛𝑛 ∗ 𝐶𝐶𝑟𝑟𝑜𝑜𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑟𝑟    Eq. 7 
 
This was followed by the identification of the parametric scores 
and protein-probe interaction energy conforming Ƭ ≥ 0.25(25%) 
against the actual PPI sites (demarcated on the basis ACP 
definition). The obtained parametric scores and threshold for 
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protein-probe van der Waals interaction energy were designated 
as the optimal range of the parameters. This way, the optimal 
ranges of all of the parameters were calculated.  
 
During the testing phase, the unbound forms of protein-chains 
extracted from the experimentally determined PPCs contained in 
testing dataset were examined using the similar strategy. The 
protein surface was examined corresponding to the optimal 
ranges of PPI sites parametric score and the optimal value of the 
van der Waals energy of interaction obtained during the training 
phase. For each PPI site parameter pair, the protein atoms with 
their parametric scores within the threshold values (i.e. optimal 
range) were clustered on the basis of geometric proximity and 
ranked using Eq. 5-7. Here too, only the predicted sites with 
Ƭ ≥ 0.25(25%)  were termed as the correctly predicted sites. 
Following this, the best ranked predicted sites were compared 
against the actual PPI sites to evaluate the prediction efficacy. 

 
Figure 3: Calculation of optimal range of PPI site parametric 
scores 
 
YAPPIS-Finder algorithm: 
 
Input: Protein-chains extracted from experimentally determined 
protein-protein complex 
 
Process: The input protein-chain was placed in a three-
dimensional box, which was divided into a cubic grid of 
resolution 0.9 Å. At each grid point, a methyl (-CH3) probe was 
placed and van der Waals energy of interaction was calculated 
between the protein atom and the methyl probe. The process of 
calculating the protein-probe van der Waals interaction energy is 
described in detail in Laurie and Jackson [22]. The interaction 
energy was calculated using the GRID force field parameters as 
described in [23]. Grid points with a ‘‘protein–probe interaction’’ 
energy more favourable (negative) than a predetermined 
threshold were retained. For such grid points, three protein 
binding propensity scores (i.e. residue interface propensity score, 
solvation energy propensity score, and hydrophobicity 
propensity score) were calculated by considering the type of 
amino acid residue whose atoms are occluded from solvent 
exposure due to the predicted grid points. An amino acid is 
considered to be interacting with a grid point if at least one of its 
atoms is within 1.6 Å of the grid point. The overall protein 
binding propensity of the grid point, k, was defined as: 
 

Ԉ𝑘𝑘 = ∑ 𝑛𝑛𝑖𝑖∗Ԉ𝑖𝑖
𝑖𝑖=20
𝑖𝑖=1

𝑁𝑁
     Eq. 8 

 

𝜔𝜔𝑘𝑘 = ∑ 𝑛𝑛𝑖𝑖∗𝜔𝜔𝑖𝑖
𝑖𝑖=20
𝑖𝑖=1

𝑁𝑁
     Eq. 9 

 

Ф𝑘𝑘 = ∑ 𝑛𝑛𝑖𝑖∗Ф𝑖𝑖
𝑖𝑖=20
𝑖𝑖=1

𝑁𝑁
     Eq. 10 

 
where 𝑛𝑛𝑖𝑖 is the number of atoms of a specific amino acid i  within 
1.6 Å of the grid point; N is the total number of atoms interacting 
with the grid point k; while Ԉ𝑖𝑖 , 𝜔𝜔𝑖𝑖  and, Ф𝑖𝑖  are the residue 
interface propensity, hydrophobicity propensity, and solvation 
free energy propensity, respectively, of the amino acid i under 
consideration. If Ԉ𝑘𝑘 , 𝜔𝜔𝑘𝑘 , and Ф𝑘𝑘  were falling in range of their 
parametric domains, then the residues (or their atoms) interacting 
with grid point k were demarcated as the interacting atoms. The 
interacting atoms were then clustered on the basis of their spatial 
proximity. A cluster is defined as the group of grid points 
wherein none of the grid points has its centre farther than 1.0 Å 
from the centre of the nearest grid point and demarcated as the 
putative PPI site. 
 
Output: Clusters of atoms as the predicted PPI sites. 

 
Figure 4: Prediction of predicted sites for the protein-chains from 
test datasets 
 
Comparison of prediction power of SPPIDER and YAPPIS-
Finder: 
The prediction power of YAPPIS-Finder was also compared 
against the SPPIDER [15] which is one of most efficient approach 
(as claimed by its designer) available. The protein-chains from the 
test dataset were examined using SPPIDER to predict the PPI 
sites and prediction power of both these approaches, SPPIDER 
[15] and YAPPIS-Finder, was compared using Eq. 5-7. 
 
Results and Discussion: 
Optimization of protein-protein interaction sites parameters by 
running YAPPIS-Finder for the training dataset 
To obtain the optimal range of PPI site parameters, the YAPPIS-
Finder algorithm was applied on protein chains extracted from 
experimentally determined PPCs of training dataset as described 
in Step 4 and Figure 3.5. The predicted and actual sites were 
compared (demarcated using the definition of ACP) and overlap 
between the two was determined using Eq. 8 to 10. Subsequently, 
the values of parametric scores and threshold of van der Waals 
energy for interaction were retrieved for which,Ƭ ≥ 0.25(25%). 
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The parametric scores obtained were termed as the optimistic 
range of the parameters under consideration. 
 
Prediction of interaction sites for the test dataset proteins by 
YAPPIS-Finder and performance analysis was done in similar 
manner. Only predicted sites with Ƭ ≥ 0.25(25%) were termed as 
the correctly predicted sites. 

 
Table 1: Parametric scores after removal of statistical outliers 

Parameter Before outlier removal After outlier removal 
Residue interface propensity 0.15 to 495.87 0.15 to 21.56 

Hydrophobicity -5.8 to 525.05 -1.38 to 22.36 
Solvation free energy -5.67 to 277.38 -5.67 to 13.22 

 
Prediction efficacy of YAPPIS-Finder and SPPIDER and 
comparison of their performance evaluation  
The prediction efficacy of YAPPIS-Finder was examined by 
running it on a blind dataset of 554 protein-chains from the test 
set. For these 554 protein-chains, their actual PPI sites were 
demarcated using the definition of ACP described in Materials 
and Methods section this section as well as in [17]. Using 
YAPPIS-Finder with optimistic range of PPIP parametric scores 
and optimal values of protein-probe van der Waals energy of 
interaction, 10 PPI sites were predicted for each protein-chain. 
However, to minimize the false negatives, the sites with Ƭ ≥
0.25(25%) were termed as the correctly predicted sites. This way, 
a total of 385 sites were termed as the correctly predicted against 
the 554 actual sites giving us the prediction accuracy of 69.67%. 
When all these 554 protein-chains were given to SPPIDER server 
[15] for site prediction, total 529 sites were predicted by it. 
However, opposite to your approach where we have put filtering 
criteria of Ƭ ≥ 0.25(25%)  for a site to be considered as the 
correctly predicted site, the SPPIDER has even predicted the site 
with only one residue, which may be a result of false prediction 
as well. 
 
Comparison between the performance evaluation of YAPPIS-
Finder and SPPIDER 
Following to the determination of prediction efficacy of the 
YAPPIS-Finder and SPPIDER revealed that SPPIDER, the sites 
predicted by both of these approaches were compared against the 
actual sites. On predicting only one PPI site for each protein-
chain, the YAPPIS-Finder found covering 22.91% of actually sites 
in the predicted site. Contrary to this, the sites predicted by 
SPPIDER covered 22.7% of actual sites. However, on predicting 
two PPI sites for each protein-chain, the percentage coverage of 
actual sites in the predicted sites by YAPPIS-Finder exceeded 
two-fold (i.e. 41.81%), thus making the YAPPIS-Finder a superior 
approach.  
 
Conclusion: 
This paper describes the development of a novel, 
multiparameteric-method YAPPIS-Finder to identify the protein-
protein interaction sites. The YAPPIS-Finder was tested on a set 
of above 500 protein-protein complexes. The ability of the 
method in identifying the protein-protein interaction sites has 
been investigated. The YAPPIS-Finder method included the 
information of solvation. Residue propensity, hydrophobicity 
and van der Waals interaction energy in its ability to identify 
near-precise region of protein-protein interactions whilst at the 
same time giving a higher degree of correlation in overlap 
between predicted and experimentally proved protein-protein 
interaction sites. 
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Hydrophobicity and Residue interface propensity 
Hydrophobicity range: -0.349 to 22.368 (X-axis of heat maps) 
Residue interface propensity range: 1.13 to 20.596 (Y-axis of heat maps) 
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  Solvation free energy and Residue interface propensity 
Solvation free energy range: -4.946 to 12.495 (X-axis of heat maps) 
Residue interface propensity range: 1.13 to 20.596 (Y-axis of heat maps) 
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Solvation free energy and Hydrophobicity 
Solvation free energy range: -4.946 to 12.495 (X-axis of heat maps) 
Hydrophobicity range: -0.349 to 22.368 (Y-axis of heat maps) 
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