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Abstract: 
It is of interest to identify and annotate milk associated genes using expression profiling and RNA-Seq data from milk somatic cells. RNA-
Seq data was pre-processed and mapping was done to identify differentially expressed genes (DEG). The functional insights about the up 
and down regulated genes were gleaned using the protein-protein interaction Network in the STRING database followed by CytoHubba 
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analysis in Cytoscope. Gene ontology, annotation and pathway enrichment was completed using ShinyGO, David tool and QTL analysis. 
These analysis shows that 21 genes are linked with the secretion of milk.  

Keywords: Casein, Somatic cell, Lactation, Milk Traits, Gene expression  
 

Background: 
Cow milk represents important nutritional support to human 
health; in particular, it is a rich source of all nutrients such as 
protein, fat, and minerals that are required for human growth. 
Studies based on clinical evidence also support the consumption of 
cow milk and dairy products for better health; it is also reported to 
be beneficial for cardio metabolic health [1]. Milk composition has a 
dynamic nature which comprises immunoglobulins, hormones, 
growth factors, cytokines, nucleotides, peptides, polyamines, 
enzymes, and other bioactive peptides [2]. The composition and 
quality of milk vary with the stage of lactation, age, breed, nutrition, 
and health status of the udder. The health of the udder is one of the 
major factors which affect the quality of raw milk [3]. Milk Somatic 
cells (SCs) in a cow are a mixture of milk-producing cells and 
immune cells, i.e., WBC (White blood cells), they are associated 
with udder health and milk production. It is a known process that 
somatic cells are released into the cow milk to defend against udder 
infections, i.e., mastitis, these cells fight with infection and also 
repair the tissue damage. Milk SC is influenced by various factors 
including cow productivity, health, parity, lactation stage, and 
breed [4]. Change in any kind of environmental conditions and 
increased stress significantly increases the amount of SC in milk. In 
developed countries, milk somatic cell counts (SCCs) are in practice 
as a marker, mainly to monitor the udder-infection and as an 
indicator of raw milk quality [5]. Somatic cells are also in practice to 
measure the shelf-life of pasteurized fluid milk. It is now well 
established that there is a direct correlation between the number of 
somatic cells and udder infection, which is directly associated with 
milk quality. There is a need to observe the expression profiles of 
the genes belonging to somatic cells of the udder, which allows 
understanding of the involvement of genes and their regulation 
process, and their associations with milk quality and production 
rate [6]. Milk protein and fats are major constituents of milk and 
these traits are genetically influenced by associated genes. The use 
of expression profiling and genome wide gene expression is 
common now a day’s [7], dairy science also reported studies based 
on expression profiling [8]. Therefore, the analysis of expression 
patterns of genes of interest is a key step to understanding the 
production and quality rate. During the lactation period expression 
of milk somatic cells may help to identify more essential genes that 
are involved in milk production and in its formation. Mammary 
transcriptome in dairy cows revolved around the cattle's health and 
milk production [9]. Availability of gene expression data, i.e., 
microarray and RNA-seq, and Bioinformatics resources for 
functional genomics make it feasible to perform functional 
genomics in a more advanced and precise manner [10]. Considering 
the facts current research aims to find out genes that affect the milk 
production and composition during the early and late days of 
lactation, for that differential expression of the gene and network 
analysis has been done. The expression level of genes will facilitate 
understanding of particular genes that enhance milk production 

and genes that decline milk production. QTLdb is used to identify 
genes that are directly involved in milk production and 
composition traits [11, 12]. Therefore, it is of interest to identify and 
annotate milk associated genes using expression profiling and 
RNA-Seq data from milk somatic cells. 
 

 
Figure 1: Schematic representation of the considered methodology 
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Material and methodology: 
Data collections:  
To perform the expression profiling RNA-seq data of Holstein cows 
were retrieved from the GEO database (GSE60575) [13]. It includes 
21 biological samples (SRP045641; Bio project ID PRJNA258561) 
and is extracted from somatic cells belonging to Holstein bovine 
milk [14]. This data contains 101 SRA runs which are paired-end 
layout reads. For the analysis purpose, data has been divided into 2 
different groups: High yield and low yield, based on their lactation 
periods from early days of lactation to late days of lactation. 
Quality control and Quantification:  
FASTX Toolkit was used to check the raw reads quality and pre-
processing. Raw reads were filtered based on the Phred score Q33 
by the FASTQ quality filter and end-trimming raw reads based on 
the quality by FASTQ Quality Trimmer [15]. Pre-processed data 
was used for quantifying transcripts abundance from RNA-Seq 
data using the Kallisto program [16]. 

 
Differentially expressed genes and Network analysis:  
Analysis of differentially expressed genes between two conditions, 
i.e. high yield of milk and low yield of milk, using p-value < 0.05 
and |log2fc| > 2 by Sleuth was performed. Fold change is 
estimated and overall expression strength is indicated by the 
identification of the coefficient [17]. Further, network analysis of 
identified DEGs was performed by STRING (v11.5) [18] and 
Cytoscape [19]. Cytohubba, a plugin of Cytoscape was used to find 
out top-ranked genes and central elements of the biological 
network on the basis of the rank and their connectivity through the 
MCC algorithm MCC (v) = ∑C∈S (v) (|C|−1)! Where S (v) is the 
collection of maximal cliques which contain v, and (|C|-1)! Is the 
product of all positive integers less than |C| [20]. 
 
Gene enrichment and Pathways analysis:  
Highly interacted top-ranked genes obtained from Cytohubba were 
used for gene ontology (GO) analysis which was carried out with 
ShinyGO [21] and functional annotation tool DAVID [22] with P-
value cut-off 0.05. Further for QTL analysis, differentially expressed 
genes were mapped with QTLdb [23]. Identification of QTL genes 
was observed and their involvement was checked in milk 
production and composition traits (Figure 1). 
 
Results and Discussion: 
RNAseq data and differentially expressed gene: 
Collected raw reads from 21 SRA experiments were pre-processed 
with FASTX, and then mapped with Bos_taurus_UMD_3.1.1 
genome by pseudo alignment tool, Kallisto. Moreover 
Bos_taurus_UMD_3.1.1 reference assembly was aligned 
approximately up to 85.5% and quantified in total 76,341 transcripts 
identified from Kallisto. Further data was normalized and resulted 
in 14,433 differential expressed genes by setting up a threshold p-
value < 0.05 between high yielding and low yielding milk 
production. Out of these genes, 1231 elevated expression of genes > 
+.2 FC (fold change) and 360 down-regulated genes < -2 FC were 
identified by setting up threshold values for |log2fc| > 2. 
 
PPIs Network: 

The Protein-Protein Interaction Network provides the connection 
between proteins which helps us to understand the role of proteins 
in a systemic manner. Predicted up (1231) and down-regulated (360) 
genes were used to construct the PPI networks. PPI network has 
been observed through a string database [24], separately for 
upregulated and down-regulated genes and network characteristics 
of both the network have been examined (Table 1). 
 
For further analysis, these PPI networks have been imported to a 
network analyzer and visualization tool, i.e., Cytoscape. Cytohubba 
plugin has been used to identify the most interactive, top-ranked 50 
nodes for upregulated and down-regulated PPIs networks (Table 
4). Upregulated most interactive, top-ranked nodes are represented 
by blue color while pink color nodes are portrayed with top-ranked 
50 down-regulated genes (Figure 2). The molecular network 
displayed that these proteins have high connectivity among them 
and make a network motif. The network also suggested that top-
ranked genes consist of more casein protein-related genes; Caseins 
protein is a major constituent of milk, which is highly interacted 
[25].  
 
In Figure 2, yellow nodes (shown in the blue and pink colour top 
most ranked 50 genes upregulated and down-regulated PPI 
networks) have been identified as the QTL gene that is mapped by 
the QTLdb database for milk yield, milk protein, and milk fat traits 
in dairy cattle. In the network, these QTL genes are well connected 
to each other. The genes, i.e., LTF, GLYCAM1, CSN1S1, CSN1S2, 
CSN2, CSN3, PIGR, and PAEP are made compact structures 
altogether and singly connected to the rest of the blue color 
network and signified as milk trait module by analyzing the 
network [26]. Eight genes, i.e., GNAS, PTPN11, SELL, STAT1, 
STAT6, STAT5B IL10RA, and CD44 are shown as yellow color 
nodes among pink color nodes network (Figure 2b) for down-
regulated top most 50 gene PPI network. These nodes well interact 
in a circular module of a network; it’s not made a compact structure 
while it is part of a well compact, circular structure of the network. 
In both networks, yellow color nodes are QTL genes that are 
signified as milk production and composition traits associated 
genes. All top ranked genes are further used for annotation and 
pathways enrichment analysis based on fold change enrichment.  
 
Functional annotations and pathway enrichment: 
To find out the additional information regarding predicted up and 
down-regulated genes and their functional annotation and pathway 
enrichment were performed. Annotation results suggest that 
upregulated genes, i.e., PRPF39, HNRNPUL1, RBM39, 
HNRNPA2B1, SRRM1, HNRNPD, RPL35A, SRSF2, and PCBP2 are 
mainly involved in the necessary function, such as RNA processing, 
RNA metabolism, and Ribonucleoprotein complex. CSN3 prevents 
casein precipitation in milk; LALBA activates LS (Lactose synthase) 
to synthesize lactose and forms a major carbohydrate component of 
milk [27, 28]. PAEP act as the Primary component of whey protein, 
and LTF transferrins are iron binding transport proteins and are 
associated with the binding of an anion. Other three genes, namely, 
CSN1S1, CSN1S2, and CALB1 play crucial roles in the capacity of 
milk to transport calcium phosphate and calcium-binding [29, 30]. 
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Down-regulated genes such as CASC3, POU2AF1, STAT6, EIF3CL, 
ADAR, STAT1, SMG5, PDCD11, STAT5B, and BCL6 control the 
innate immune response, Macromolecule metabolic process, and 
Cytokine-mediated signalling pathways during late days of 
lactation [31]. The genes, i.e., RPS27L, RPL34, RPL7, RPL8, RPL6, 
RPS24, and SAFB are involved in major biological Reactome 
pathways such as Metabolism of proteins, Translation, and 

Metabolism of RNA. Nonsense Mediated Decay (NMD) 
independent of the Exon Junction Complex (EJC) pathways 
maintains the expression of the genes and reduces the error in gene 
expression [32]. Down-regulated genes, i.e., PTPN11, STAT6, 
CSF2RB, and STAT1 are involved in 3 Reactome pathways (Table 
2), which mainly belong to the immune system signalling process 
[33, 34]. 

 
Table 1: Network characteristics for upregulated and down-regulated genes while most interactive, top-ranked 50 genes from upregulated and down-regulated genes given by string 
S. No. PPIs Upregulated genes Down-regulated genes Most interactive  

upregulated genes (50) 
Most interactive  
down-regulated network (50) 

1 Number Of Nodes 1116 324 50 50 
2 Number Of Edges 5357 619 348 167 
3 Average Node Degree 9.6 3.82 13.9 6.68 
4 Avg. Local Clustering Coefficient: 0.238 0.319 0.809 0.536 
5 Expected Number Of Edges 4433 534 63 36 
6 PPI enrichment p-value < 1.0e-16 0.000178 < 1.0e-16 < 1.0e-16 

 
Table 2: Major biological reactome pathways in which highly interacted up and down-regulated genes involved  
S. No. Category  Term  Count  P-Value  Benjamini 
A. Biological reactome pathways shared by upregulated genes 
1 R-BTA-156827 L13a-mediated translational silencing of Ceruloplasmin expression  4 8.50E-05 1.90E-04 
2 R-BTA-392499 Metabolism of proteins  5 1.20E-02 2.50E-02 
3 R-BTA-72613 Eukaryotic Translation Initiation  5 1.20E-05 3.90E-05 
4 R-BTA-72689 Formation of a pool of free 40S subunits  5 6.00E-06 3.90E-05 
5 R-BTA-72737 Cap-dependent Translation Initiation  5 1.20E-05 3.90E-05 
6 R-BTA-72766 Translation  5 1.80E-05 5.30E-05 
7 R-BTA-8953854 Metabolism of RNA  5 3.60E-05 9.10E-05 
8 R-BTA-927802 Nonsense-Mediated Decay (NMD)  5 1.10E-05 3.90E-05 
9 R-BTA-975956 Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC)  5 8.30E-06 3.90E-05 
B. Biological reactome pathways shared by down-regulated genes 
1 R-BTA-449147 Signalling by interleukins  3 9.2E-3 8.2E-1 
2 R-BTA-1280215 Cytokine signalling in immune system 3 3.2E-2 1.0E-0 
3 R-BTA-512988 Interleukin-3, Interleukin-5 and GM-CSF signalling  2 3.8E-2 1.0E-0 
 
Table 3: Genes associated with milk yield and composition 
S. 

No. 
Gene name 
(Chromosome 
number) 

Traits (QTL ID) 

A Upregulated genes 
1 GLYCAM1 (5) 

 
Milk fat yield (175859); Milk yield (175950); Milk protein yield (176227) 

2 CSN2 (6) 
 

Average daily milk yield (281728); Milk rennet coagulation time (136223); Milk casein percentage (136227); Milk yield (13567); Milk casein content 
(136222); Milk fat yield (136219); 
Milk protein percentage (13570) 

3 CSN3 (6) Milk yield (10468); Milk kappa-casein percentage (13565); Milk protein yield (31639); Milk alpha-S1-casein percentage (13562); Milk alpha-
lactalbumin percentage (36287); Somatic cell count (31646); Milk casein yield (36290); Length of productive life (31641); Milk fat yield (10470) 

4 LTF (22) Milk urea nitrogen content (95740); Milk lactose content (95724);  Clinical mastitis (30827); Milk solids percentage (95739) 
5 PAEP (11) Milk yield (12419); Milk alpha-lactalbumin content (13551); 

Milk beta-lactoglobulin protein content (20583); Milk whey protein content (12423); Milk beta-casein percentage (13555); Milk kappa-casein content 
(12404); Milk solids percentage (238160); Somatic cell count (238175); Milk alpha-S1-casein percentage (12431); Milk alpha-lactalbumin percentage 
(13551); Milk protein yield (13551); Milk casein content (12422); Milk alpha-casein content (238161) 

6 CSN1S2 (6) Milk beta-casein content (20562); Milk protein content (20590) 
7 CSN1S1 (6) Milk yield (3855); Milk alpha-casein content (20558); Milk alpha-casein to beta-casein ratio (20596) 
B Down-regulate genes 
1 PTPN11 (17) Milk fat yield (181826) 
2 CD44 (15) Lactation persistency (125214) 
3 GNAS (13) Milk protein percentage (16139); Milk protein yield (16137); 

Somatic cell count (16143); Milk fat percentage (16138); Milk yield (16136) 
4 IL10RA (15) Somatic cell score (125376); M. paratuberculosis susceptibility (13115) 
5 SELL (16) Milk yield (281485) 
6 STAT5B (19) Milk yield (14140); Milk protein yield (14141) 
7 STAT6 (5) Yield grade (11476) 
8 STAT1 (2) Milk arachidonic acid content (122306); Milk protein percentage (9984); Somatic cell score (95253); Milk trans-6/8-Octadecenoic acid content 

(122320); Milk trans-16-Octadecenoic acid content (122328); Milk cis-8,11,14-Eicosatrienoic acid content (122341); Milk protein yield (9985); Milk 
yield (136183); Milk fat percentage (9983) 

 
Table 4: List of top 50 up and down-regulated genes 
 Upregulated Genes Down-regulated Genes 
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 LOC510852, HNRNPM, HNRNPA3, HNRNPA2B1, HNRNPU, SF3B1, 
SRSF5, HNRNPDL, HNRNPD, HNRNPH1, SRSF2, SNRPA, SFPQ, 
TRA2B, HNRNPR, TRA2A, RPL7, RPL8, RPL6, RPL34, RPL35A, 
RPS24, RPS27L, HNRNPH3, MRPS5, MRPL16, BTF3, EIF5B, 
HNRNPUL1, SFRS13A, SRRM1, SRRM2, NACA, PCBP2, PAEP, 
CSN1S1, CSN1S2, CSN2, CSN3, LTF, PIGR, YTHDC1, RBM39, 
ZFAND4, GLYCAM1, LPO, PRPF3, RBM22, SAFB, PRPF39. 

HNRNPA3, HNRNPD, ILF3, HNRNPR, SFPQ, FUS, HNRNPUL1, 
RBMX, CD19, SELL, CD44, STAT1, EFTUD2, BCL6, VCAM1, CD3E, 
ITGAL, STAT6, STAT5B, PTPN11, NOS2, CSF2RB, IRF8, PDCD11, 
EMR1, PABPC4, MX1, ATP5A1, ARRB2, GNB1, GNAS, IL10RA, 
SNRPB, CASC3, RUVBL1, FES, MAVS, MRPL16, ADAR, POLDIP3, 
PRKCB, SP1, VARS, POU2AF1, NCOR1, SMG5, HDAC6, EIF3CL, 
CNOT7, AARS. 

 

 
Figure 2: Gene network interaction of top ranked genes, yellow colour nodes showed the important genes that are associated with 
production and composition traits are interacted with each other (a) Blue colour nodes depicted with upregulated genes and (b) Pink 
colour nodes portrayed with down regulated genes. 
 
Identification of genes associated with milk production and 
composition:  
In total, 15 candidate functional genes have been identified, which 
are known to affect milk production and composition traits in 
which 7 up-regulated genes and 8 down-regulated genes are 
associated with the total 63 traits of milk quality and quantity. 
Comparative analysis with previously reported genetic data 
including QTL mapping was used for the assessment of the 
position of DEG’s. The physical position of each DEG with the 
position of known QTLs that have been shown to be associated 
with the milk yield, milk protein, and milk fat traits in dairy cattle 
from the QTLdb database has been examined [35]. Through QTL 
mapping it has been observed that in total 67,849 QTL are involved 
in milk, out of the 5,532 QTL are involved in milk production, 
39,536 QTL are involved in milk composition fat, 20,108 QTL 
belongs to milk composition protein, and 2,673 belong to other milk 

nutrients [36, 37]. Highly expressed and interacted genes are also 
associated with the protein and fat composition of milk, which are 
influenced by nutrition, stage of lactation, and breed of cattle [38], 
GLYCAM1 and CSN2 play a major role in the milk fat composition 
and CSN1S1, CSN1S2, CSN2, CSN3 are involved in protein 
composition [39]. LTF is mainly involved in the composition of 
Milk lactose content, Milk urea nitrogen content, and Milk alpha-
S1-casein percentage [40]. Milk solids percentage and milk somatic 
counts are influenced by the expression of PAEP gene (Table 3), 
that is well reported in previous studies [41]. 
 
In down-regulated gene group, genes such as GNAS and PTPN11 
are reported to be important for oocyte maturation and embryo 
development, and also act as growth factors [42]. SELL gene 
involved in mastitis, biological process reported [43]. STAT1 and 
STAT6 are involved in calculating yield grade and maintaining cow 
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body weight and health and STAT5B have an almost fatalistic 
attitude towards milk fat and protein composition, which directly 
affect milk quality during the late days of lactation [44]. Negative 
expression of IL10RA protects the cow from M. paratuberculosis 
susceptibility and it is also reducing the number of somatic milk 
cells which directly affects the milk production rate [45]. The 
presence of CD44 affects lipid metabolism and lactation persistence 
[46]. Available reports justify that the expression level of 
upregulated genes helps to enhance the milk production and 
composition rate in the early days of lactation and down-regulated 
genes degrade the milk quality and quantity in the late days of 
lactation [47]. 
 
Conclusion: 
Analysis shows that some genes are highly upregulated and are 
linked with milk yield and its composition. Data shows that 6 genes 
namely RPS27L, RPL34, RPL7, RPL8, RPL6 and RPS24 are found to 
be involved in the secretion of milk proteins. Data further shows 
that 9 down-regulated genes (PTPN11, CD44, GNAS, IL10RA, SELL, 
STAT5B, STAT1, STAT6, and PAEP) are linked to affect milk yield 
and its composition. 
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