
Bioinformation by Biomedical Informatics Publishing Group open access
www.bioinformation.net Database
__

ISSN 0973-2063
Bioinformation 1(5): 146-152 (2006)

Bioinformation, an open access forum
© 2006 Biomedical Informatics Publishing Group

146

Synchronization of APIIS based farm animal biodiversity systems

Zhivko Duchev1, 2* and Eildert Groeneveld2
1Department of Animal Breeding and Genetics, University of Veterinary Medicine, 30559 Hannover, Germany; 2Institute for

Animal Breeding, Federal Agricultural Research Center (FAL), 31535 Neustadt, Germany;
Zhivko Duchev* - Email: duchev@tzv.fal.de; * Corresponding author

received March 24, 2006; revised April 25, 2006; accepted April 30, 2006; published online May 03, 2006

Abstract:
One of the major problems in the management of farm animal and biodiversity information is the exchange of data and
keeping it up-to-date, an issue that is very common with distributed information systems consisting of number of databases.
This article describes the synchronization protocol developed in APIIS (adaptable platform independent information system)
framework and reviews the basic considerations required when building distributed information system that has to exchange
information in a network of APIIS based systems. The protocol is designed to synchronize a common part of different database
structures. It is developed without any intended use of proprietary database engine and can work with a variety of RDBMS
(relational database management system). The main targets of the protocol are animal biodiversity information systems
without permanently connected nodes. The EFABIS (European farm animal biodiversity information system) is reviewed as an
example of the implementation.

Availability: The synchronization protocol is integrated as a part of the APIIS framework, which is freely available from the
authors.

Keywords: database management; data synchronization; farm animal information systems

Glossary of Terms:
Data element (DE) = smallest amount of data treated as one block in the synchronization process. DE is the list of columns
from a defined subset of records in a table; Node = each independent part (database) of the global information network; Source
= any node that distributes data elements to other nodes; Target = set of nodes to which one source distributes a data element;
network manager = the management authority that will route the traffic of information, preventing conflicts or inconsistencies.

Background:
Development of open source databases in the APIIS
framework [1] is common and the installation of identical
systems becomes a financially affordable option. As
outlined in elsewhere [2], data collection in animal
agriculture relies on the distributed collection of farm
animal data: these may originate on many farms, on test
stations and in laboratories. These different sources will
have to be integrated into one central database for across
herd evaluations as is typically done in Best Linear
Unbiased Prediction (BLUP) genetic evaluation [3] in
selection programs. In principle, peripheral databases can
be viewed as subsets of the central system both in terms of
the database structure and also in terms of business rules.
Clearly, business rules should be enforced at the initial
data entry where - in case of errors - the original
information is close at hand for correction. These local
herd systems may be copies of the central system
expanded in scope for on herd management as is done in
commercial herd management packages which are
available for nearly all species in animal agriculture. With
this topology the task of transferring data from the
periphery (e.g. farms) to the center is the last step in
building a comprehensive central database.

Because all business rules have already been enforced at
the periphery using a set identical to the rules at the
central database, a generic data transfer can be employed
which amounts to the synchronization among the central
and the peripheral databases, without a need to consider
business rules at this stage. The EFABIS network has a

similar topology: there is a world wide central node of the
biodiversity database at the United Nations FAO (Food and
Agricultural Organization) in Rome. [4] On the regional level
the EAAP (European Association of Animal productions) runs
a database [5] with expanded information both in terms of
content and structure, while countries like Poland have their
own national database comprising all information from the
levels above plus additional national data not to be shared with
the other levels. Again: data is collected at the national and
perhaps for some countries at the regional and worldwide level
and will have to be propagated to all other levels. In line with
the example from the animal agriculture, we have an identical
core structure of the databases at all levels and are enforcing
the same set of business rules everywhere. Thus, after initial
data entry - at whatever level - information newly added to the
database must be transferred, i.e. can be synchronized with the
other databases in the network. Development, implementation
and performance of such a synchronization procedure are
described here.

Methodlogy:
Synchronization Requirements
The synchronization requirements were derived according to
the requirements of EFABIS network.

Requirement #1
Each DE has a primary copy and there is only one database in
the network where it can be edited. In animal breeding
information systems, data is usually collected on different
places like artificial insemination stations, farms and research
institutions. All these sources of information keep copies of

Bioinformation by Biomedical Informatics Publishing Group open access
www.bioinformation.net Database
__

ISSN 0973-2063
Bioinformation 1(5): 146-152 (2006)

Bioinformation, an open access forum
© 2006 Biomedical Informatics Publishing Group

147

data, there is someone (human or organization) who is
officially responsible for the quality of data and all users
of these data rely on its representative value. As an
example the veterinary examination of the animal can be
taken and there is a paper document containing the animal
identification data, the veterinarian data and the results.
Therefore, a natural requirement is that each data element
should have a primary copy at one node where this
element can be changed. This is the node where the
person collecting the DE always enters the data, and in all
other nodes this data will be read-only. This requirement
ensures also a clear responsibility for the accuracy and up-
to-date status of each DE. For example, each country in
EFABIS that presents its data to the European (EAAP)
and global (FAO) level is responsible for the data quality
and consistency.

Requirement #2
For each DE the "distribution target" (nodes that want to
obtain this element) is defined. In general terms, the data
collection process does not end in itself. Usually the
collected data is intended to be used by someone and in
most cases the data users are clearly defined. For example,
data collected on testing stations may be sent to a research
institute for calculating the breeding values and the results
are returned to the farmers. Very often there is a strictly
defined hierarchy in the system with one central database
collecting all data as a data-warehouse. This is the
situation in the EFABIS network, where each European
country sends data to EAAP and EAAP distributes part of
the data to FAO. Therefore, for each data element there
must be a well defined target group of nodes which needs
this DE. This set of nodes is actually the “distribution
target”. It could be also empty if this element is only for
local use and will not be propagated.

Requirement #3
Each DE to be included in the synchronization process has
to be defined by both source and target nodes. The DE to
be transferred has to be negotiated and approved by the
both sides. When a reconciliation session is started it
automatically synchronizes all approved DE, thus not
allowing the user to refuse the changes. This principle
looks very restricting, but follows from the requirement of
primary copy. The idea behind this requirement is that a
user who needs a certain DE is accepting by default all
changes, relying on the fact that they are representative.
For example, if the primary copy of DE is deleted, then
this element should be deleted everywhere. In contrast, the
act of removing DE from the synchronization list has to be
confirmed by both sides. Distribution sources and targets
may be changed as long as this does not produce
inconsistencies. This principle ensures that each node can
choose the source and target nodes for a DE, unless this
will disturb normal flow of data in the network. This
implies that all changes in the DE path have to be
coordinated by all nodes that exchange this DE.

Requirement #4
Each node can distribute all public data elements loaded
in its database. If the primary copy node is the only source
for a DE then this will produce a bottleneck in the data-

flow. Therefore, each node that has received a public DE as a
result of a synchronization process should be also allowed to
propagate it further. This is not the case with non-public data
elements and such elements can be distributed only to a subset
of authorized nodes.

Requirement #5
Synchronization should not require human intervention. The
protocol should be completely automated and be able to run on
a regular basis as a scheduled task. It should not produce any
inconsistencies in the target node, because such discrepancies
usually require human intervention from scientific and
technical persons - the former to solve the conflict, the latter to
introduce the changes to the database. The process of solving
conflicts is time consuming, and it requires the original data
copy.

Requirement #6
A network regulating mechanism for the data-flow should
exist. As the nodes are equal in rights and part of the
requirements rely on the negotiation between two nodes, an
unregulated data-flow can produce locks in the system.
Therefore, if the network has no inbuilt "by design" clear data-
flow, it has to be regulated by set of rules. They will prevent
actions that are against the system consistency or resolve data-
exchange conflicts between the nodes. The need for such rules
can be seen from the following example: Let the node A target
one of its data elements to node B and node B target this DE to
node C. Let also presume that by system design node B has to
have always this DE. In this situation if node A wants to
change the target of this DE to node C then node B will loose
its source. There are two possible solutions of this conflict:
Node A is not allowed to change the target, because it will
produce inconsistency. It is allowed to change the target, but
has to do this in cooperation with node C, which will target it
to node B.

Requirement #7
The system is loosely coupled and not all nodes are connected
all the time. Although the access to the INTERNET is getting
cheaper, there are a lot of farms, even in European countries,
where the only option for connection is via phone line or
satellite. An example is PISSA (Pig Information System South
Africa) where data are collected in the farms off-line and then
sent to the center once per week via e-mail.

Requirement #8
The protocol should be able to synchronize data over LAN
(local area network) and WAN (wide area networks) such as
INTERNET. It has to ensure secure transfer of the data over
the public parts of the network. The nodes of the animal
information system which uses this protocol can be part of the
internal network of one organization or can be connected via
INTERNET. Therefore, the synchronization protocol should
use network transport protocols which are applicable
everywhere. And as the data exchanged can be private, the
protocol has to encrypt it when transferring over a public
network.

Requirement #9
The protocol has to be able to exchange text and binary data.
The last but not least requirement is related to the type of

Bioinformation by Biomedical Informatics Publishing Group open access
www.bioinformation.net Database
__

ISSN 0973-2063
Bioinformation 1(5): 146-152 (2006)

Bioinformation, an open access forum
© 2006 Biomedical Informatics Publishing Group

148

information exchanged. We will not only synchronize data
fields in the database containing quantitative values like
size, milk, wool length, but also documents and
multimedia data. This may look obvious, but it is
important for the type and quantity of the data that will be
transmitted.

Analysis of the requirements and description of the
developed synchronization protocol
Analysis of the requirements
The requirement for one node where a user can change a
DE puts us in situation similar to the Lazy Master
Replication model from distributed systems.
[6].According to this model, when the user updates a DE,
only the primary copy of this DE in its master node is
updated. Then, in separate transactions the master node
updates each replica. There is a certain time of
inconsistency between the master node and the replicas.
Therefore this model is called lazy or asynchronous. In
our system we also use the primary copy approach, but we
presume that not all nodes can connect to the master node.
Therefore, the propagation of changes to the other nodes
is done in a cascading manner and the nodes using the
master node as a source are updated first, then their target
nodes are updated and so on until all nodes are updated.
Each node except the master one will be in an
asynchronous state until one of its sources is updated and
synchronization with that source take place. To assess the
time in asynchronous state and its impact on the system
functionality we have to look at the specificities of the
information systems we are dealing with. In the national
and supranational biodiversity systems like EFABIS a
detailed breed description, morphology, performance and
demographic data are collected. New data in such systems
are loaded on a monthly or even on yearly basis. On the
other hand, in herd management information systems, the
central database receives data weekly or daily. Hence,
synchronization per day [or] per week is sufficient.

Figure 1: Excerpt of EFABIS topology, containing
National Polish database, European regional one and the
world database of FAO. The dashed arrow represents the
rule for one source per data element

The other issue to be considered here is the number of
sources a node can use for a DE. Having several sources
for one DE can lead to values collisions - if node C gets
two different DE versions from node A and node B. Such
problems are discussed elsewhere. [7, 8] A simple
restriction that solves such conflicts is the limitation of
one source for each data element. Two different databases
can have two different sources for the same DE, but a
single database can have only one source for its DE. If the
user node can establish a connection to more than one

node keeping a DE then the user can choose, in accordance
with the network rules, which one will be used as a source and
also move from one source to another, but cannot use two
sources simultaneously. The one-source requirement produces
a bottleneck in the data-flow, because the possible interval to
update DE is the intersection of the online time of the source
and the target node. This restriction does not have big impact
on the animal biodiversity databases, as already stated, the time
interval between the updates is relatively long. In herd
management animal information systems each DE comes to the
central database usually from one source, e.g. field test data for
a certain animal comes from one farm. Moreover with proper
management of the network, there can be a scheduled interval
of time when both nodes are online for synchronization.

In each node we have information about each data element’s
route. This can be fully described by the expression:

DE [Primary Copy, Source, Target]
Primary Copy :: = Node Name
Source :: = Node Name | Empty
Target :: = List of Node Names | Empty

’Primary Copy’ is the name of the node where this DE was
initially entered. The ’Source’ is the node that has supplied this
element and ’Target’ is the list of nodes, this element will be
delivered to. These expressions are illustrated in an example
from EFABIS, shown in Figure 1. In this example we use the
DE ’breed description’, which includes the general description
of all Polish breeds. This DE is initially entered in the Polish
database. Poland distributes it to the EAAP database and from
there it will be propagated to the world database of FAO. As a
result, we have the following descriptions of the DE’s route in
the various databases. In the Polish node (named PL), it is
described as DE[PL, , EAAP]. Here the ‘Primary Copy’ is PL
because it is the first node where this DE is entered in the
system. The ‘Source’ field is empty, since we have not
received this DE as part of synchronization process. The
‘Target’ list consists of only one element – ‘EAAP’, because
only the EAAP node will receive it directly from Poland.
Following the same logic the description in the EAAP node is
DE[PL, PL, FAO] and in the FAO’s database DE[PL, EAAP,].
The empty Target field in the last description means that FAO
will not distribute this DE to other nodes.

The source and target fields of a DE’s route description in the
nodes as defined above are sufficient to determine the route of
DE within the whole network, resulting in a tree structure. The
‘Primary Copy’ node is the root while the sources and targets
describe the ribs. Two checks have to be done in this structure:
(1) the ribs definition is consistent, and (2) there are no cycles
in the tree. The former check can be done for each of the two
nodes such that Node1 (source) and Node2 (target) exchange
the element DE1:

(Node2.DE1[Source]=Node1) and (Node2 in
Node1.DE1[Target])

The main problem with both checks is that information is
spread around the nodes and has to be collected in one place by
the manager of the network.

Bioinformation by Biomedical Informatics Publishing Group open access
www.bioinformation.net Database
__

ISSN 0973-2063
Bioinformation 1(5): 146-152 (2006)

Bioinformation, an open access forum
© 2006 Biomedical Informatics Publishing Group

149

There are two possible types of synchronization: (1) based
on a log(journal) and (2) based on a state. The journal
synchronization is based on the logging of all data
modification statements that are executed on the source
database and sending them to target node. It is suitable
when there is a lot of data with relatively small number of
changes. The log-based reconciliation is used in systems
like replicated dictionary [9], Bayou [10], Vagabond [11]
and StorageBox. [12] The general problem with this
approach is that the node has to ensure that all targets
have updated their state before removing the statement
from the log file, which can lead to accumulating large
amounts of unused data. This can happen for example, if a
node which is in the target list does never connect to the
source node. The approaches to this issue vary from
discarding writes from logs in [10] to removing long
latent target nodes from the replication set [13], but they
are not suitable in our setup.

Therefore, the alternative is synchronization ’by state’ -
based on version vectors or time-stamping of the data
elements. [14, 15] The time-stamp approach requires
clock synchronization as shown in [16], which is
practically impossible in the network of independent
databases like EFABIS. Therefore, the versioning
approach was chosen, where each record has an integer
version attached, which is incremented on update. In the
synchronization session, the source node plays the role of
the server and the target node that of a client. The client
sends the current version number of the DE to the server
where it is compared with the server’s own version. If the
server’s version is new the updated DE is propagated to
the client. The shortcoming of this method is that each
time the versions of all DEs to be synchronized are
compared, thus making the overhead proportional to the
number of records. This approach is suitable for databases
with relatively small number of records and this is the
case with farm animal biodiversity databases collecting
cumulated data on breed level. For example, the European
regional database and Polish National database in
EFABIS contain 21,4426 and 7,290 records respectively.

Database structure
To execute and manage synchronization between
databases the following additions are made to the database
structure:

Additional columns
It is well known from the replicated databases that each
record has an identifier that is unique within the
information network. To ensure this independently from
the RDBMS engine, which is one requirement of the
APIIS design [Error! Reference source not found.], a new
’system’ column for the Global Unique Identifier ’guid’
has to be added to each table. Upon insertion in the
primary copy node the ‘guid’ is automatically set from a
sequence. On the other hand the synchronization process
has to preserve the ’guid’ in the target database.

The synchronization ’by state’ requires to keep track of
the changes made to records. Therefore, in each table an
additional field for the record version has to be added.

When initially inserted in the primary copy node all records
from one DE have a version set to one and each update
increments the version by one. This field should be also
included in the synchronization of a DE.

By definition, each DE consists of "defined subset of records".
Such classification in APIIS is done on the basis of the
additional ’class’ column which has been added to each table.
It is up to the designer to define the classes when designing the
system. The classification of the records can be done on the
basis of the location where the original data were collected. In
IS collecting individual animal data, these places can be farms,
breeding societies, test stations. As an example let we have a
system collecting herdbook data for animals from three farms.
Then each record can be classified as ‘Farm1’, ‘Farm2’ or
‘Farm3’, depending on the farm of the animal.

To have option for private data in the database, each record has
a Boolean ’synch’ field. The flag stored in this field is used to
indicate if the record is targeted for synchronization. The user
when entering data explicitly sets this flag. Examples of the
meta-fields are shown in Figure 2.

Figure 2: Additional tables and meta-fields (shaded) needed
for the synchronization protocol in the APIIS structure

Additional tables:
The management of routes requires three ’system’ tables in
each database. The table ’Nodes’ contains the names of the
nodes and their physical IP-addresses. Each node which is
source or target of the current node must be registered in this
table. All names must be unique within the network with each
IP address linked only to one node. The other two tables –
’Sources’ and ‘Targets’ (Figure 2) are used for specifying the
incoming and outgoing data elements and their nodes through
the (’columnnames’, ’class’, ’tablename’, ’source’|’target’)
columns.

Synchronization protocol
The synchronization protocol is of client-server type. Each
node, which distributes data elements, has a server daemon
listening for incoming connections. Such a node will be
referred in the following as ‘server’. On the other side, the
node which wants to update its data from the server is the
"client" and has to run the client part of the software. When a
connection is initiated by the client, it starts with a handshaking
to verify if the server is free for synchronization. In this case,
the client reads the description of the first DE, from the server
and sends this description called DED (Data Element
Description) for confirmation. After successful confirmation
from the server, the client reads the state of this DE (the guid

Bioinformation by Biomedical Informatics Publishing Group open access
www.bioinformation.net Database
__

ISSN 0973-2063
Bioinformation 1(5): 146-152 (2006)

Bioinformation, an open access forum
© 2006 Biomedical Informatics Publishing Group

150

and version of all records described by the DE) and sends
this information to the other side. Then the server
compares this information with its own state and chooses
appropriate action for updating the client:

foreach client.record in DE1 {
 if (not exists server.record) then
 client.record.action='Delete';
}
foreach server.record in DE1 {
 if (not exists client.record) then
 client.record.action='Insert';
 else if(server.record.version>client.record.version) then
 client.record.action='Update';
}

The action and the data retrieved from the server (in case
of insert or update) are encapsulated into a merge
structure and send back to the client. There the merge
structure is transformed in SQL statements in the client’s
native SQL dialect and the database is updated. The
functional model of the synchronization process for one
DE is shown in Figure 3. The same steps are repeated for
all other DE expected from the server. The entire
operation is treated as one transaction and changes are
committed only if all DE are successfully updated. This is
a weakness of the protocol, because in case of error, the
synchronization has to be started from the beginning. The
block diagram of the used algorithm is shown in Figure 4.

Figure 3: Functional model of the data synchronization
process for a single data element

Figure 4: Block diagram of the synchronization algorithm

Implementation in EFABIS
The automated synchronization protocol was implemented
in EFABIS (European Farm Animal Biodiversity
Information System). This system is a network of
databases collecting biodiversity data from European

countries and transfers it to the central European database. The
European database will be used as a data source for the world
biodiversity database of FAO, especially for the data that is
required to build the World Watch List for endangered
domestic breeds. [17] The data collected in EFABIS describes
the farm animal breeds in terms of naming, origin and
development, morphology, special qualities, performance,
demographic trends and conservation programs.

In EFABIS we have clear hierarchy on three levels - National,
Regional and World level. Each lower level is an expansion of
the previous one in terms of content and structure. For example
the National Polish Biodiversity database [18] stores data
required by EAAP and additional data for species like fish and
small fury animals, which are not represented at the European
level. The Polish database has the structure of the European
one plus extensions in terms of additional tables and fields, to
handle the country specific data. The flow of data (as shown in
Figure 5) is bi-directional. National databases have to send the
data required by the European database and from there a subset
will be sent to the World database. The world database will
also propagate some data to the national databases, e.g.
documents, images and common codes that have to be uniform
within the whole network like codes for the species and sex.
Such codes must be introduced only in one place, i.e. - the
FAO database and accepted from the other nodes. Each node
has also the option of having private codes, but these have to
be used only in private data which will be not synchronized.

Each national node is named by the ISO-3166-1-alpha-2 code
elements of the International Organization for Standardization
[19], i.e. BG for Bulgaria, PL for Poland. This ensures unique
name even within the whole world. Two exceptions are the
names of the European database and the global database - for
the former ’EAAP’ is used, and for the latter - ’FAO’. To
ensure uniqueness of the ’guids’ and all other internal
identifiers each database has to have a separate range for the
sequence generators. Operationally, this was done by attaching
to the official list of countries a predefined range for each
country. This range should be set in the configuration files
needed for creating a new node. All other actions required are
completely automated by the software.

Figure 5: Topology of the EFABIS system. On the lower row
the national databases are represented - BG for Bulgaria, DE -
Germany, PL - Poland, VN - Viet Nam. In the middle row are
the regional databases, e.g. EAAP for the Animal Genetic Data
Bank of the European Association for Animal Production. On
the top is the biodiversity database of FAO

Bioinformation by Biomedical Informatics Publishing Group open access
www.bioinformation.net Database
__

ISSN 0973-2063
Bioinformation 1(5): 146-152 (2006)

Bioinformation, an open access forum
© 2006 Biomedical Informatics Publishing Group

151

Each record has to be identified as owned by a country or
by one of the supranational databases. This give us the
unique classification of the records and therefore the class
column in EFABIS was named ’owner’. As a value the
two-letter codes of the countries, along with ’EAAP’ and
’FAO’ are used. This marker is set automatically by the
system through the country that a user is attached to. This
setup allows countries that do not have their own database
to load data directly in the European database. The EAAP
node will be primary copy for these records, i.e. these data
can be edited only there. The class column ’owner’ was
also used in the Access Control System of EFABIS, not
only to mark the backups of DE as read-only, but also to
define complete set of access rights for all users in the
network.

For the transport part of the synchronization the TCP/IP
protocol was used. The server daemon was set to listen on
port 5433. If the node is behind firewall, it has to be set to
allow incoming connections on this port. For compression
and encryption of the transfer data, Mina Naguib’s
Net::EasyTCP module from CPAN [20] is used. The
encryption of the data is done using the Blowfish
algorithm. [21]

As an interesting byproduct the synchronization procedure
has been used to initialize newly created national
databases. By simply defining appropriate sources and
targets, the national data was downloaded in one-time
transfer from the global database.

Performance
Two nodes were established on two different machines for
testing the synchronization protocol. One of the machines
was with Mobile Intel(R) Pentium(R) 4, CPU 3.06GHz,
512MB RAM and the other with 4 64 bit AMD OpteronTM

850, CPU 2.4GHz, 8GB RAM. The tests were done using
three types of connections: 100Mb/sec, 10Mb/sec and
128Kb/sec. In each test the time to receive merge data
from the server, the time to update the database and the
total synchronization time was measured. The results,
rounded to the next integer are shown in Table 1. The
value of 100,000 merge records was chosen to test the
situation of initial loading of the database, while the other
runs represent the amount of the updates expected in small
and middle databases. The amount of memory used for the
state information for 100,000 records was 5.54 MB, or 59
bytes per record. This information was read from the
database in 2.35 sec and transmitted to the client in 1.128
sec using a 10 Mb/sec connection. As can be seen from
the results with fast connections, the time needed to
transfer data over the network is approximately the same
or even less than the time needed to merge changes in the
client database, i.e. the bottleneck is the communication

with the database backend. Another interesting observation is
the time required to receive data on 100Mb/sec and 10Mb/sec
were practically the same. This means that the protocol does
not use the whole bandwidth which is also confirmed by the
results on 128 Kb/sec. When reducing the bandwidth 80 times
(from 10 Mb/sec to 128 Kb/sec) we have only about fifteen
fold increase of the receive time. A similar tendency can be
observed in the total synchronization time - it increases only
six time required from 100Mb/sec and 10 Mb/sec to 128
Kb/sec. This speed of the protocol is mainly due to the fact that
it internally encrypts and compresses data for secure transfer
over public network and usually the average record size in
animal databases is relatively small - about 500 B. Therefore,
the results on a 128Kb/sec connection can be considered
sufficient for production systems with slow internet
connections.

Time to receive merge data (seconds)
Bandwidth / Merge

records count
100 1000 10000 100000

100 Mb/sec 1 2 11 80
10 Mb/sec 1 2 13 82
128 Kb/sec 2 13 129 1279

Time to update the database (seconds)
Bandwidth / Merge

records count
100 1000 10000 100000

100 Mb/sec 1 2 17 180
10 Mb/sec 1 2 17 183
128 Kb/sec 1 2 16 163

Total synchronization time (seconds)
Bandwidth / Merge

records count
100 1000 10000 100000

100 Mb/sec 7 9 33 268
10 Mb/sec 8 10 36 270
128 Kb/sec 34 46 175 1451

Table 1: Time to receive merge data from the server, update
the database and total synchronization time

Conclusions:
The synchronization protocol designed for data exchange
between loosely coupled nodes in farm animal information
systems relies on the strict primary copy approach for each data
element, thus avoiding update conflicts and the need for human
intervention. The drawback of the protocol is the transfer and
comparison of the DE state information on each run.
Nevertheless, the protocol shows good results on medium and
small databases similar to the ones used in biodiversity,
national gene banks and small population management
information systems. The total synchronization time scales
using a 128 Kb/sec connection, allows running the protocol as
scheduled on a daily basis.

References:
[1] E. Groeneveld, Livestock Prod Sci., 87:1 (2004)
[2] E. Groeneveld, Proc 7th WCGALP, 33:721 (2002)
[3] C. R. Henderson, Biometrics, 31:423 (1975)

[PMID:1174616]
[4] http://www.fao.org/dad-is/

[5] http://www.tihohannover.de/einricht/zucht/eaap/index.
htm

[6] J. Gray, et al., Proc SIGMOD ’96, 25:173 (1996)
[7] B. Douglas, et al., Proc SOSP-15, 172 (1995)
[8] T. Ekenstam, et al., Distributed and Parallel

Databases, 9:187 (2001)
[9] G. T. J. Wuu & A. J. Bernstein, ACM SIGOPS Oper.

Syst. Rev., 20:57 (1986)

Bioinformation by Biomedical Informatics Publishing Group open access
www.bioinformation.net Database
__

ISSN 0973-2063
Bioinformation 1(5): 146-152 (2006)

Bioinformation, an open access forum
© 2006 Biomedical Informatics Publishing Group

152

[10] K. Petersen, et al., Proc SOSP-16, 288 (1997)
[11] K. Nørvåg & K. Bratbergsengen, DEXA

Workshop, 728 (1997)
[12] F. Hupfeld, ICDCS Workshops, 458 (2004)
[13] R. Ladin, et al., ACM Trans. on Comp. Syst., 10:

360 (1992)
[14] D. S. Parker, et al., IEEE Trans. Software Eng.,

9:240 (1983)
[15] P. S. Almeida, et al., Proc ICDCS-22, 544 (2002)

[16] L. Lamport, Commun. ACM, 21:558 (1978)
[17] B. D. Scherf, World Watch List for domestic animal

diversity, (2000)
[18] http://efabis.izoo.krakow.pl
[19] http://www.iso.org/
[20] http://www.cpan.org/
[21] B. Schneier, Fast Software Encryption, Cambr. Sec.

Workshop, 191 (1994)

Edited by P. Kangueane
Citation: Duchev & Groeneveld, Bioinformation 1(5): 146-152 (2006)

License statement: This is an open-access article, which permits unrestricted use, distribution, and reproduction in
any medium, for non-commercial purposes, provided the original author and source are credited.

