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Abstract: 
Various statistical models have been developed to describe the DNA binding preference of transcription factors, by 
which putative transcription factor binding sites (TFBS) can be identified according to scores assigned. Statistical 
significance of these scores, usually known as the p-value, play a critical role in identification. We developed an 
efficient algorithm to provide precise calculation of the statistical significance, remarkably enhancing the calculation 
efficiency by reducing the time complexity from an exponent scale to a linear scale, and successfully extended the 
application of this algorithm to a wide range of models, from the commonly used position weight matrix models to the 
complicated Bayesian Network models. Further, we calculated p-values of all transcription factor DNA binding sites 
recorded in the database, JASPAR, and based on these, we investigated some unseen properties of p-values as a whole, 
such as the p-value distribution of different models and the p-value variance according to changed scoring schemes. We 
hope that our algorithm and the result of computational experiments would offer an improved solution to the statistical 
significance of transcription factor binding sites. The software to implement our method can be downloaded from 
http://pcal.biosino.org/pCal.html. 
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Background: 
Transcription factor (TF), termed as the major regulator 
of tissue and environment specific gene expression, 
binds to sequence specific sites in the regulatory region 
to control the transcription of its target gene. Extensive 
efforts have been made in developing statistical methods 
to describe DNA binding specificity of transcription 
factors [2-8] based on known transcription factors and 
their binding sites [1, 9]. Early in the 1980s, Gary D. 
Stormo [10] proposed the widely used Position Weight 
Matrix (PWM) model to characterize the binding 
preference, which rests on the main assumption that the 
probability of any nucleotide that occurs at a certain 
position of the binding site is independent of those 
occurring at all other positions. However, this 
assumption of independency remains disputed in some 
circumstances. Recent work demonstrated the necessity 
of the inner dependency among nucleotide positions [5, 
11] and employed new methods to capture the inner 
dependency [4, 6, 8], such as the Bayesian Network 
Model [2], serving as a more natural approach to uncover 
the substance of transcription factor binding site (TFBS). 
 
Given the model which characterizes DNA binding 
preference, we can perform a genome-wide scan to 
identify putative TFBSa. Each putative TFBS will be 
assigned a score by a certain score scheme to evaluate 
the binding potential. But it remains a challenge since 

controlling the false positive/negative prediction is 
urgently needed in performing such a scan, especially for 
eukaryotic genomes where binding sites appear in 
extremely long intergenic regions. Calculating statistical 
significance of these scores provides a conventional 
method to reduce errors in prediction. Formally, for a 
statistical model M to predict TFBS of the fixed length L, 
the p-value of a putative binding site with score S is 
calculated using equation (1) (given in supplementary 
material). 
 
A simple idea is to exhaustingly enumerate the total 
nucleotide sequences with length of L, named as the 
sequence set hereinafter. Unfortunately, this naive 
method takes a time complexity of O(4L), an undesirable 
task when L is larger than 10. In 2005, Barash Y. 
improve this naïve method by introducing importance 
sampling technique [2]. However, due to the nature of 
the sampling technique, it produces an approximate 
result rather than an accurate solution. 
 
To overcome the time complexity raised by directly 
enumerating the sequence set, we turn to enumerate the 
total scores, named as the score set hereinafter, of all 
possible nucleotide sequences with length of L. It is a 
compressed set much smaller than the sequence set since 
an element of the score set may have several mappings 
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into the sequence set, that is to say, some different 
sequences often have the same score. Based on this idea, 
in this contribution, we propose an accurate solution with 
time complexity of O(4xLxΩ)<<4L to calculate p-values, 
where Ω is a constant about 104. 
 
Methodology: 
Consider a binding site R = R1R2…Rl…RL with L 
nucleotides, where L∈Z+. Obviously, each site Rl could 
be any one of the four nucleotides ‘A’, ‘C’, ‘G’ and ‘T’, 
where 1≤l≤L, l∈Z+. And, the probability of Rl being ‘A’ 
is denoted as p(l, Rl = ‘A’). Generally, the nucleotide 
selecting preference of binding sites R can be expressed 
in terms of probability matrix, using equation (2) in 
supplementary material.  
 
The independency assumption is not always reliable as it 
is common that a single amino acid residue contacts with 
more than one nucleotide and vice versa. So, to some 
extent, a nucleotide Rl is correlated with other 
nucleotides. In this case, the probability of Rl being ‘A’ is 
expressed in terms of the conditional probability using 
equation (3) (under supplementary material). 
 
Generally, a more reasonable statistical model for 
describing the nucleotide selection preference of 
transcription factor DNA binding sites can be denoted as 
in equation (4) (shown in supplementary material). 
 
Next we scan regulatory regions followed by assigning 
each sites a score in the light of the following score 
scheme, by using formula (5) (given in supplementary 
material). 
 

Then potential TFBS, R, can be identified according to 
the score cutoff, where binding sites with scores larger 
than the threshold or with adequate statistical 
significance are considered as potential TFBSs. 
Calculating the statistical significance, usually known as 
the p-value, is a conventional way to define cutoffs. 
Since the null-distribution of total scores is known, the p-
value of any potential TFBS can be easily obtained 
according to equation (1) (supplementary material). 
Therefore, our task is to offer an effective and accurate 
solution for calculating the null-distribution of all scores, 
which is regarded as the prerequisite to p-values. 
 
Assume that the sequence set is composed of all short 
nucleotide sequence with length of L, denoted as in 
equation (6) shown in the supplementary material. 
 
Intuitively, the size of SL is smaller than RL, since some 
of the different sequences in Rl result the identical score 
in SL. Hence, enumerating set SL can be much more 
efficient than enumerating RL, leading to considerable 
reduction of computation time. In fact, our improvement 
in time economy goes far beyond this extent. Since the 
exact size of Sl contributes remarkably to the efficiency 
of our method as we mention above, how we control this 
factor is of great importance. Here we estimate that the 
size of Sl, is less than 10m+n, where m, n∈Z+ are 
parameters that represent the count of effective digits of 
S(Rl), S(Rl) ∈Sl,l=1, 2…,L before the decimal point and 
behind the decimal point respectively (equation (4) see 
supplementary material). Here, we summarize our 
method into pseudo codes presented in figure 1.

 
Figure 1:  The pseudo code of our method 
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Results:  
The dataset of all our computational experiments is taken 
from the database JASPAR [1], including matrices that 
describe transcription factor DNA binding preference as 
well as their corresponding DNA binding sites. All the 
calculations were performed in a Dell Optiplex 270 
machine, which has an Intel(R) Pentium(R) 4 CPU of 
2.60GHz and 1.5GB RAM.  
 
Selecting the optimal parameter 
As we discussed in the method section, the adjustable 
parameter c, affects the size of score sets, and therefore 
affects the operation time greatly, where c = m+n, c∈Z+ 

and m, n∈Z+ represent the count of effective digits 
before the decimal point and behind the decimal point 
respectively of elements in score sets. We must find the 
optimal value of c so as to determine the upper limit of 
time complexity of our algorithm O(Lx10c). In our 
computational experiments, transcription factor DNA 
binding sites with various lengths in database JASPAR 
were used to compute the p-values and the result shows 
that c=4 is already good enough for calculating p-values 
even when the p-value is more strict than 10-5. 
 

Comparison among different scoring schemes 
As we mentioned in the introduction, p-value calculation 
is also dependent on scoring schemes (see equation (1) in 
supplementary material). Many researchers proposed 
their own scoring schemes [2, 4, 14], and whether 
different scoring schemes lead to different results of p-
values has become of great interest to researchers. 
Authors of software package MATCH, proposed an 
information theory based method for calculating scores 
for potential TFBSs is shown in equation (7) under 
supplementary material. 
 
How it outperforms the conventional cumulative 
probability based scoring scheme is given in equation (8) 
(see supplementary material). 
 
Here we adopt two different score schemes to calculate 
the TFBSs from database JASPAR. The result shows 
there is no significant difference between each other in 
figure 2. 
 
Besides, according to the p-value distribution in figure 3, 
we found that most of these p-values are around 10-4, 
thereby supplying a reference point for credible p-values 
to transcription factor binding sites.  

 

 
Figure 2: Comparison of p-values obtained based on different scoring schemes. The vertical axis in this figure depicts 
the −log(p-value) and the horizontal axis of left two sub graphs depicts length of TFBS, while the horizontal axis of 
two sub-graphs (right) depicts the frequency of different p-values. Each point in the two left sub-graphs represents the 
log of p-value corresponding to a certain TFBS. The two right sub-graphs are the distribution of p-values by 
accumulating probability and MATCH score scheme. Although different scoring schemes were used, p-value 
distributions not very different. 
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Figure 3: p-value is better than the raw score for identifying TFBS. The vertical axis of the two upper sub-graphs depicts 
the –log(p-value), while the vertical axis of the two lower sub-graphs depicts the raw score directly obtained from scoring 
schemes. The horizontal axis in all sub-graphs depicts the various lengths of TFBS. The blue dots represent p-values of true 
TFBSs provided by JASPAR whereas red dots represent p-values of DNA sequence fragments of various lengths from 
genome background. According to the two upper sub-graphs, there is a sharp distinction between true TFBSs and genomic 
background for both the cumulative probability based scoring scheme and the MATCH scoring scheme. However, in the 
two lower sub-graphs, blue dots and red dots appear fused together, indicating that raw scores are not appropriately used as 
the criterion to identify TFBS 
 
P-values serve as a better criterion to identify TFBS 
than the raw scores do 
In previous sections, we repeatedly mentioned that 
adopting p-value as a conventional way to define cutoffs 
for distinguishing the true TFBS from its background 
sequences. Why bother to do so rather than simply 
adopting raw scores directly obtained from scoring 
schemes, as showed in formula 5, 7 and 8 (under 
supplementary material), to define the cutoff? Another 
computational experiment gives a credible explanation to 
this question. We collected the true TFBS from database 
JASPAR as the positive dataset, and some DNA sequence 
with the same length of those TFBSs from genome 
background as negative control. We calculated raw scores 
as well as p-values of the type data. As results shown in 

figure 3, there is a blurred part between the true TFBS and 
the genome background when we adopt raw scores to 
distinguish them, whereas there is a sharp distinction 
between true TFBSs and genomic background when we 
adopt p-values. It is the blurred part that is very likely to 
cause the error in the identification. Therefore, we are able 
to conclude that p-values serve as a better criterion to 
identify TFBS than the raw scores do. 
 
Discussion:  
Various statistical models have been developed to describe 
the transcription factor DNA binding preference, by which 
we identify putative transcription factor binding sites 
according to scores assigned. Statistical significance of 
these scores play a critical role in assessing the efficiency 
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of prediction. We developed an efficient algorithm to 
provide precise calculation of the statistical significance. 
With regards to the time efficiency of our algorithm, our 
major improvement rests on two key points. First, by 
calculating the scores of the overlapping part of sequences 
foremost, we reduced the total time consumption 
considerably. Further, instead of enumerating elements in 
the sequence set, we performed our calculations with the 
more compressed score sets, thus we skillfully convert the 
time complexity of being a exponent in relation to TFBS 
length L to that of a linear relation with L, which is a 
remarkable improvement.  
 
Moreover, since our algorithm is generally based on the 
enumerating approach, the p-value calculated by our 
method is a precise solution, different from the result of the 
sampling method, which is the approximate solution due to 
the nature of sampling strategy. 
 
Beside the speediness and preciseness of this algorithm, 
another positive point lies in its applicability. As an 
alternative to Probability-Generating-Function-based 
methods, such as Staden’s [15] and Huang’s methods [12], 
our method can be applied not only to the context of  
independent identical distribution of relevant nucleotides, 
like PWM models, but also to Bayesian Network models. 
In all, table 1 under supplementary material summarizes the 
properties of our method compared with others. 
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Supplementary material 
 

  PWM Bayesian network model 
Enumerating Sequence Set Slow Slow 
Sampling Sequence Set (Barash, 
et al., 2005) 

Fast but not accurate 
solution 

Fast but not accurate solution 

Probability Generating Function 
(Staden, 1989) 

Accurate Solution Not Available 

Our Method Accurate Solution Accurate Solution 
Table 1: Comparison with existing methods 
 

Equations   

( )( )random bp nucleotide sequence p S L s>     → (1) 

where function S is the scoring scheme. According to formula 1, the prerequisite to p-value is to obtain the distribution 
of scores of all possible L bp nucleotide sequences, which is usually called null-distribution. 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2

1 2

1 2

1 2

1, ' ' 2, ' ' , ' ' , ' '
1, ' ' 2, ' ' , ' ' , ' '
1, ' ' 2, ' ' , ' ' , ' '
1, ' ' 2, ' ' , ' ' , ' '

l L

l L

l L

l L

p R A p R A p l R A p L R A
p R C p R C p l R C p L R C
p R G p R G p l R G p L R G
p R T p R T p l R T p L R T

= = = =⎛ ⎞
⎜ ⎟= = = =⎜ ⎟
⎜ ⎟= = = =
⎜ ⎟⎜ ⎟= = = =⎝ ⎠

L L

L L

L L

L L

 

→ (2) 

( ), ' ' |l lp l R A pa=       → (3) 

where pal represents the configuration of parent nodes(direct dependent nucleotides) of the lth  nucleotide. For example, 
if the lth nucleotide has two parent nucleotides and the configuration (appearance) of them are ‘A’ and ‘T’, than the 
probability of Rl being ‘A’ is p(l,Rl= ‘A’ | pal = ‘AT’). 

( ), |l lp l R pa            → (4) 

where, l = 1, 2, …, L, Rl ∈ { ‘A’, ‘C’, ‘G’, ‘T’}, and pal ∈ {R1R2…Ri…Rn | n∈Z+, Ri∈{ ‘A’, ‘C’, ‘G’, ‘T’}. Insightful 
discussions of Bayesian Network description on TFBS can be referred to Nir Friedman and co-worker’s work (Barash, 
et al., 2003). 
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The scores of each short sequence in RL consist of another set SL={S (R)| R∈RL, L∈Z+}, namely the score set. 
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