
Bioinformation by Biomedical Informatics Publishing Group open access

www.bioinformation.net Views and Challenges
__

ISSN 0973-2063
Bioinformation 2(5): 182-184 (2007)

Bioinformation, an open access forum
© 2007 Biomedical Informatics Publishing Group

182

Speedup bioinformatics applications on multicore-
based processor using vectorizing and

multithreading strategies

Kridsadakorn Chaichoompu1, Surin Kittitornkun2, Sissades Tongsima1, *

1Genome Institute, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong
Luang, Pathumtani 12120, Thailand; 2 Department of Computer Engineering, Faculty of Engineering, King Mongkut’s Institute of Technology,

Ladkrabang, Bangkok 10520, Thailand; Sissades Tongsima * - E-mail: sissades@biotec.or.th; * Corresponding author

received December 13, 2007; accepted December 28, 2007; published online December 30, 2007

Abstract:
Many computational intensive bioinformatics software, such as multiple sequence alignment, population structure analysis, etc.,
written in C/C++ are not multicore-aware. A multicore processor is an emerging CPU technology that combines two or more
independent processors into a single package. The Single Instruction Multiple Data-stream (SIMD) paradigm is heavily utilized in
this class of processors. Nevertheless, most popular compilers including Microsoft Visual C/C++ 6.0, x86 gnu C-compiler gcc do not
automatically create SIMD code which can fully utilize the advancement of these processors. To harness the power of the new
multicore architecture certain compiler techniques must be considered. This paper presents a generic compiling strategy to assist the
compiler in improving the performance of bioinformatics applications written in C/C++. The proposed framework contains 2 main
steps: multithreading and vectorizing strategies. After following the strategies, the application can achieve higher speedup by taking
the advantage of multicore architecture technology. Due to the extremely fast interconnection networking among multiple cores, it is
suggested that the proposed optimization could be more appropriate than making use of parallelization on a small cluster computer
which has larger network latency and lower bandwidth.

Keywords: multicore processor; vectorization; optimization; speedup

Background:
A multicore processor is an emerging processor technology
which combines two or more independent processors into a
single package. For example, a dual-core processor contains
only two independent processors in the same CPU package
whereas a dual processor refers to a computer which two
single-core CPUs. In general, multicore processors allow a
computing device to perform execution at thread-level
parallelism without utilizing multiple processors in separate
physical packages. Most recent processors come with
extensions to their instruction sets to effectively utilize the
parallelism from multiple cores. Such an instruction set is
commonly referred to as the Single Instruction Multiple Data-
stream (SIMD) instruction set.

For example an instruction ADD, operates on a number of
data items in parallel. Clearly this dramatically improves
execution speed which is why these instruction set extensions
were created [1]. Most compilers including Microsoft Visual
C/C++ 6.0, x86 Gnu C-compiler (gcc) do not automatically
generate SIMD code. Many bioinformatics applications,
however, are written in C/C++ language and by default were
compiled by one of these compilers. Even though the old
codes can be compiled and run successfully on multicore
computers, these compiled codes will not be able to fully

utilize the inherent parallelism. Speedup of these codes will
not noticeably increase. A considerable number of these
applications is computationally intensive and, therefore, many
have previously turned to parallelization solutions on cluster
computing where more computers and a fast networking
switch need to be invested in. Any further improvement over
cluster computing depends heavily on expensive fast
interconnection networking with extremely low latency. By
contrast, since there are multiple cores in the same CPU
package, fast interconnection is already inherently
implemented and built into multicore CPUs by their makers.

As the multicore system is recently introduced to the market,
utilizing multicore systems requires new tools, new
algorithms, and a new way of looking at programming [2].
Amarasinghe [3] previously identified significant problems
with multicore compilers and the behavior of commercial
applications running on performance asymmetric systems [4].
Improving bioinformatics applications using multicore
compiler will not happen overnight. In this paper, we propose
a compiler optimization protocol to improve a class of
bioinformatics programs written in C/C++ by utilizing
multicore SIMD instructions. This idea has been successfully
tested on several bioinformatics applications such as

Bioinformation by Biomedical Informatics Publishing Group open access

www.bioinformation.net Views and Challenges
__

ISSN 0973-2063
Bioinformation 2(5): 182-184 (2007)

Bioinformation, an open access forum
© 2007 Biomedical Informatics Publishing Group

183

ClustalW [5] and population structure software,
STRUCTURE [6].

Methodology:
We introduce a generic compiler optimization framework that
improves the execution time of a bioinformatics application
written in C/C++ as our case study program, MT-ClustalW
[7]. Figure 1 shows the multithreading strategy which
contains 3 steps. First software profiling must be performed

to analyze the target bioinformatics tool and identify portions
which this tool can or cannot be improved. These “can not be
improved” parts are the bottleneck (i.e., must be sequentially
executed) of all the written codes. Then, at the non-sequential
parts, the C/C++ source code should be modified by utilizing
thread library and/or loop optimization technique to instruct
the code portions to be run in parallel on multiple cores.
Finally the optimized code must be verified to make sure that
it is fully functional.

Figure 1: Applying multithreading and vectorizing technique flowchart.

Multithreading strategy
Profiling software for parallelization
Profile the target bioinformatics tools using Intel thread
profiler [8] in order to find “bottlenecks” in the software
which we can target for speedup of the program.

Applying thread library
Modify the sequential steps of the program using pthread
library with MUTEX object as a synchronization object.

Validating software result
After completing the program modification, we have to verify
correctness of the result and check how much speedup that
the modified program can achieve. We use Beyond Compare
[9] to verify the results of the modified code.

Vectorizing strategy
Analyzing the software for vectorizing strategies
We use the Intel C++ Compiler for Windows [10] to optimize
the target program by enabling the /QxP option which

optimizes code for Intel Core Duo processors and Intel Core
Solo. processors, Intel Pentium 4 processors with Streaming
SIMD Extensions 3, and compatible Intel processors with
Streaming SIMD Extensions 3 (SSE3). With the /QxP option,
the compiler automatically profiles the code as well as
optimizes the loops. However, only the simple loops can be
optimized by this approach. As another contribution of this
paper, we present techniques which can assist the compiler to
better optimize the loops. We used the Intel VTune
Performance Analyzer to profile ClustalW in debug mode and
searched for the hotspots within the functions.

Applying loop optimizing methodologies
These top-usage functions will be optimized by: loop
reversal, loop fission, type casting, and procedure call
reduction.

Validating resulting software
Beyond Compare™ tells us that the optimized program is
able to produce correct results.

Bioinformation by Biomedical Informatics Publishing Group open access

www.bioinformation.net Views and Challenges
__

ISSN 0973-2063
Bioinformation 2(5): 182-184 (2007)

Bioinformation, an open access forum
© 2007 Biomedical Informatics Publishing Group

184

Conclusion:
We presented the multithreading and vectorizing
methodologies for improving bioinformatic software
performance. The proposed technique was designed to fully
utilize the emerging multicore processor technology. Even
though, existing compilers can automatically optimize
program source code, it is not able to intelligently produce
good SIMD instructions. By suggesting the use of a compiler
with multithreading and vectorizing instructions, the running
time of computationally intensive bioinformatic applications
written in C/C++ can be improved. Clearly such a collection
of these techniques can be applied to speed up other
bioinformatic tools written in C/C++ by promoting the
inherent parallelism in multicore processors.

References:
[01] http://www.hayestechnologies.com/en/ techsimd.htm
[02] P. F. Gorder, Computing in Science & Engineering, 9: 3

(2007)
[03] S. Amarasinghe, In CGO., 137 (2005)
[04] S. Balakrishnan, et al., In CGO., 506 (2005)
[05] J. Thompson, et al., Nucleic Acids Research, 22: 4673

(1994) [PMID: 7984417]
[06] http://pritch.bsd.uchicago.edu/ structure.html
[07] K. Chaichoompu, et al., HiCOMB IPDPS, Greece

(2006)
[08] http://www.intel.com
[09] http://www.scootersoftware.com
[10] http://www.intel.com

 Edited by T. W. Tan & S. Ranganathan

 Citation: Chaichoompu et al., Bioinformation 2(5): 182-184 (2007)
 License statement: This is an open-access article, which permits unrestricted use, distribution, and reproduction in

 any medium, for non-commercial purposes, provided the original author and source are credited.

