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Abstract: 
Gene function annotation remains a key challenge in modern biology. This is especially true for high-throughput 
techniques such as gene expression experiments. Vital information about genes is available electronically from 
biomedical literature in the form of full texts and abstracts. In addition, various publicly available databases (such as 
GenBank, Gene Ontology and Entrez) provide access to gene-related information at different levels of biological 
organization, granularity and data format. This information is being used to assess and interpret the results from high-
throughput experiments. To improve keyword extraction for annotational clustering and other types of analyses, we 
have developed a novel text mining approach, which is based on keywords identified at the level of gene annotation 
sentences (in particular sentences characterizing biological function) instead of entire abstracts. Further, to improve the 
expressiveness and usefulness of gene annotation terms, we investigated the combination of sentence-level keywords 
with terms from the Medical Subject Headings (MeSH) and Gene Ontology (GO) resources. We find that sentence-
level keywords combined with MeSH terms outperforms the typical ‘baseline’ set-up (term frequencies at the level of 
abstracts) by a significant margin, whereas the addition of GO terms improves matters only marginally. We validated 
our approach on the basis of a manually annotated corpus of 200 abstracts generated on the basis of 2 cancer categories 
and 10 genes per category. We applied the method in the context of three sets of differentially expressed genes obtained 
from pediatric brain tumor samples. This analysis suggests novel interpretations of discovered gene expression patterns.  
 
Keywords: text mining; functional clustering; microarray data analysis 
 
Background: 
In recent years, increasing amounts of biological data 
have become available through techniques such as DNA 
microarrays and other high-throughput gene and protein 
assays. [1, 2] As large numbers of genes can be included 
in such studies, the task of assigning meaningful 
biological function to gene patterns or gene clusters is a 
considerable challenge. Typical analyses using 
supervised (classification) or unsupervised (clustering) 
methods require the user to incorporate the necessary 
background knowledge. [3] This ability to incorporate 
background knowledge is fundamental to effective and 
efficient scientific discovery. A substantial amount of 
biomedical knowledge is captured in free-text form in 
abstracts and full-text articles and also in specialized 
biological information systems such as Gene Ontology 
(GO) [4], Medical Subject Headings (MeSH) [5], 
Database of Interacting Proteins (DIP) [6] etc. Until only 
a few years ago, human reasoning was the primary 
method for the extracting, synthesizing and interpreting 
the information contained in the biomedical literature 
and supporting biological information systems.  
 
However, in recent years the number of online 
documents (and other biological information 
repositories) has grown tremendously. This is both an 
opportunity and a challenge. On one hand, such 
resources facilitate automated processing of the 

knowledge and information contained in these 
documents. On the other hand, such processing poses 
considerable algorithmic and computational challenges 
[7]. For example, the biomedical abstract database 
MEDLINE [8] currently contains about 15 million 
citations and about 40 000 citations are added monthly.  
 
Text mining is the application of techniques from 
machine learning, natural language processing (NLP), 
information extraction and statistical/mathematical 
approaches to automated extraction of useful knowledge 
from text [9]. Text mining of biomedical literature has 
been applied successfully to various biological problems. 
Many studies focus on protein-protein [10-13] and gene-
protein interactions. [14] Other specific relationships 
between biological entities such as sub-cellular 
localization of proteins [15, 16], molecular binding 
relationships [17] and interaction between genes and 
drugs [18] are also explored. Text analysis of biomedical 
literature has also been applied successfully to 
incorporate functional information of gene expression 
data [19-23]. For example, MedMOLE [19] identifies the 
functions among a group of genes by simple text 
clustering of entire MEDLINE documents associated 
with the genes. Blaschke et al. [20] extracted information 
about the common biological characteristics of gene 
clusters from MEDLINE using a statistical term 
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weighting approach. This method returns an ordered set 
of keywords with a high probability of occurrence in 
abstracts. Liu et al. [24] extended this approach by 
clustering such keywords to find gene-to-gene 
relationships. Clustering genes by functional keyword 
association can provide direct information about the 
nature of genes and their functional association [25]. 
However, the quality of the keyword lists extracted from 
the biomedical literature for each gene significantly 
affects the clustering results. Commonly, these 
approaches represent genes by extracting keywords from 
entire abstracts [25]. These keywords may undergo 
transformations such as weighting or dimension 
reduction with the goal of improving clustering quality 
and efficiency. However, gene clustering using entire 
abstracts has the following main drawbacks. (a) 
Abstracts normally contain a large number of irrelevant 
sentences. These sentences may influence the clustering 
process and are likely to obscure information useful for 
gene annotation. (b) The number of unique terms in 
abstracts is typically very large. This requires the ability 
to deal with sparse data spaces or methods for 
dimensionality reduction. (c) Dimension reduction 
methods such as principal component analysis or signal-
to-noise methods increase the computational complexity, 
may lead to the loss of important keywords and do not 
guarantee that the reduced dimensionality will yield 

better clustering/annotation information. Also, the 
composite features may be hard to interpret.  
 
To avoid the above drawbacks and improve the 
clustering process, we decided to use gene annotation 
sentences from abstracts instead of using full abstracts to 
extract the keywords. Current NLP techniques allow 
such sentence extraction from documents. Using 
clustering on the basis of sentence-extraction techniques 
has the advantage of avoiding complex dimensionality 
reduction and term weighting techniques. Further, this 
approach is likely to yield more specific terms which are 
easier to interpret. We first extracted the potential 
sentences describing gene annotation information from 
abstracts using a NLP method utilizing gene/protein 
name dictionaries and pattern-matching-based rules. In 
addition to this sentence-keywords approach, we carried 
out two further experiments involving MeSH terms and 
GO terms as supplementary keywords. Hence, in our 
method, each gene is represented by set of keywords 
extracted from sentences, MeSH terms and GO terms. To 
demonstrate the usefulness of the proposed text mining 
methods, we performed hierarchical clustering of a gene 
× keyword matrix to find functionally discrete sub-
groups of genes. The overall experimental design and its 
components are illustrated in the Figure 1. 
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Figure 1: Experimental design of gene clustering with sentences-level, MeSH and GO keywords 
 
We validated the performance of keywords extracted by 
our method using a manually annotated corpus of 200 
abstracts. We also evaluated the usefulness of our 
method by sorting differentially expressed genes from a 
microarray experiment into functional sub-groups. The 
objective of our gene clustering process using functional 
keywords is to identify and summarize potential 
functional gene groups and to complement the 
conventional gene expression data clustering tasks.  
 
Methodology:  
Gene/Protein name and synonym dictionary creation 
One of the major obstacles in biomedical literature 
processing is the variety of names each gene or protein is 
known by. To address this problem in the present study, 

we developed a gene/protein name dictionary. 
Essentially, each entry of this dictionary consists of a 
preferred (or canonical) name for a gene/protein and a 
list of synonyms used for this gene/protein. The 
dictionary was created on the basis of the Entrez Gene 
[26] (previously LocusLink) database, one the most 
stable and complete sources of information on genes. 
Since our study is part of a wider investigation in the 
context of human brain tumor research, we focused 
specifically on human genes/proteins. We developed 
PERL scripts to extract and select from the Entrez Gene 
entries the official symbols as preferred name of the gene 
and other aliases as known synonyms. In addition, we 
augmented the dictionary with relevant synonyms from 
other publicly available databases including GeneCards 
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[27], SwissProt [28], GoldenPath [29] and HUGO [30]. 
The final dictionary contains 26 731 unique human 
gene/protein names and 274 845 synonym names. 
 
Keywords extraction from biomedical literature 
In our study each gene is represented by a list of 
keywords extracted from MEDLINE abstract sentences, 
MeSH terms and GO terms. The procedure for extracting 
keywords from each data source is discussed below.  
 
MEDLINE abstracts keywords extraction 
To extract the keywords associated with each abstract, 
we decided to use gene annotation sentences from the 
abstracts instead of constructing a large keyword vector 
based on the entire abstract. The assumption is that the 
information given on sentence-level is much more 
specific and therefore useful to characterize the function 
of the genes. Only sentences that contain one or more 
genes reference from our gene lists will be considered as 
gene annotation sentences, all other sentences are 
discarded from the analysis. We applied the following 
three steps to extract sentence-level keywords (1) gene-
name normalization, (2) sentence filtering, and (3) 
keyword extraction.  
 
Gene-name normalization  
This process replaces all the gene names in the abstract 
with its unique canonical identifier (Entrez gene ID) 
using the gene-synonym dictionary specially constructed 
for this study. 
 
Sentence filtering  
This process extracts all the gene annotation sentences 
from abstracts that contain one or more gene names from 
our gene lists using regular-expression pattern matching 
rules. We used different regular expressions (which rely 
on matching of pre-defined patterns or rules such as 
arrangement of gene/protein names with articles, 
prepositions and other keywords) to filter sentences 
containing one to three genes. We defined our regular 
expressions as nouns describing agents, passive verbs, 
active verbs and nouns describing actions. Table 1 (in 
supplementary material) depicts an example for each 
type of expression.  For example, the regular expression  
 
($gene @{0,6} $action (of|with) @{0,2} $gene) 
 
extracts sentences that match the structure shown below 
the expression. The notational construct ‘A → B → ...’ is 
interpreted as ‘A followed by B followed by ...’. 
 
gene name → 0-6 words → action verb → ‘of’ or ‘with’ 
→ 0-2 words → gene name 
 
Sentence keyword extraction 
Sentences containing one or more gene names were 
parsed using the Brill part-of-speech tagger. [31] This 
program labels each word in a sentence with its part-of-
speech information such as word category like noun, 
verb, adjective, preposition, etc. This information plays a 
critical role in identifying corresponding noun and verb 
phrases. Then, with a simple PERL program, noun 
phrases containing gene names were filtered out and the 
remaining noun phrases and verb phrases were extracted 

as keywords. Initial tests showed that certain keywords 
were common for most of the genes in the list (e.g., 
activates, associates, stimulates etc.). We manually 
removed these common keyword words from the list. 
The following example illustrates this process:  
 

(1) Sentence 
BRCA1 physically associates with p53 and 
stimulates its transcriptional activity. 

 
(2) Brill-POS-tagged sentence 
BRCA1/NNP physically/RB associates/VBZ 
with/IN p53/NN and/CC stimulates/VBZ its/PRP$ 
transcriptional/JJ activity/NN. /. 

 
(3) Sentence keywords 
associates, stimulates, transcription activity 

 
(4) Sentence keywords after manual curation 
transcription activity 

 
MeSH keywords extraction 
To extract MeSH keywords, we searched for the gene 
names in our gene lists in the title and abstract of 
MEDLINE citations related to each gene and extracted 
the associated MeSH terms for each gene. The extracted 
gene-MeSH term list was represented by scores 
indicating the frequency of gene-MeSH term co-
occurrence. Initial tests showed that certain MeSH 
keywords in the list were common biological terms and 
less useful from the point of view of gene annotation 
(e.g., human, DNA, animal, Support U.S Govt etc.). A 
collection of MeSH stop words was created manually 
and these terms were removed from the gene-MeSH term 
lists. Finally, from the thus filtered gene-MeSH lists, the 
20 highest-frequency MeSH terms associated with each 
gene were taken as MeSH keywords associated with 
each gene. For example the MeSH keywords associated 
with a gene “FOS” in our gene list are oncogene, 
felypressin, transcription-factor, thermoreceptors, DNA-
binding, antibiosis, inflammatory-response, zinc-fingers, 
gene-regulation, and neuronal-plasticity. 
 
GO keyword extraction 
We used the GO keywords information incorporated in 
Gene Ontology [Error! Bookmark not defined.] to extract 
GO keywords associated with each gene. Out of the three 
GO annotation categories we included only molecular 
function and biological process as we believe that 
cellular component (e.g. nucleus, cell membrane etc.) is 
less important for characterizing genes in the context of 
this study.  Further, due to the hierarchical nature of GO 
and multiple inheritance in the GO structure, we consider 
with every ancestor up to level 2 in the GO tree in 
assigning GO keywords. This enables us to use more 
generalized GO terms. For example the GO keywords 
associated with the gene “FOS” in our gene list are 
protein-dimerization, DNA binding, RNA polymerase, 
transcription factor, DNA methylation, inflammatory-
response, and nucleus. 
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Keyword representation and calculation of numeric 
vectors 
After the keyword extraction phase, each gene was 
described by a list of keywords extracted from 
MEDLINE abstract sentences, MeSH terms and GO 
terms. These keyword vectors then served as a basis for 
clustering (i.e., unsupervised class discovery). To do this, 
each term vector needed to be represented by a numeric 
vector representing the relative importance of keywords 
for each gene. This process is concerned with computing 
the numeric weight, wij, for each gene-term pair (gi, tj) (i 
= 1, 2,…n and j = 1, 2, … k) to represent the gene’s 
characteristics in terms of the associated keywords. 
Common techniques for such numeric encoding includes 
(1) Binary, the presence or absence of a keyword relative 
to a gene, (2) Term frequency, he frequency of 
occurrence of a keyword with a gene (3) Term frequency 
× inverse document frequency (TF*IDF),  the relative 
frequency of occurrence of a keyword with a gene 
compared to other genes. 
 
As we derived the keywords from gene annotation 
sentences but not from full abstracts, we found the 
number of keywords associated with each gene is small. 
We noticed also that absolute frequency of most 
keywords tended be one. Therefore, we adopted the 
binary encoding scheme as illustrated in Table 2 in 
supplementary material, in which each gene is 
represented by a vector of ‘normalized’ absolute 
keywords frequencies. The ‘normalized’ absolute 
frequency of each vector element (keyword) is either 
zero or one.  
 
Gene clustering 
Clustering is a data mining technique that groups or 
clusters data components (typically represented as 
numeric vectors) according to their similarity or 
dissimilarity. The goal is to maximize intra-cluster and 
minimize inter-cluster similarity among the components. 
[32, 33] Clustering is typically used to identify sample 
groups in data. Unlike supervised learning methods that 
require explicit class label information, clustering is 
unsupervised and no information about target groups 
(classes) is used. Two basic approaches to clustering can 
be distinguished, hierarchical clustering (e.g., 
agglomerative and divisive) and non-hierarchical 
clustering (e.g., k-means/c-means clustering). 
Agglomerative hierarchical clustering starts with each 
object representing a cluster and then merges the clusters 
in sequence. Divisive hierarchical clustering starts with 
all samples in one cluster and successively split clusters. 
In hierarchical clustering the distance (similarity) 
between clusters is measured using different techniques 
such as single linkage, average linkage or complete 
linkage [32] and basic distance and similarity metrics 
(e.g., Euclidean, Minkowski, Hamming distance).  K-
means clustering requires a priori specification of the 
desired number of clusters, k. This method clusters data 
into groups by iteratively optimizing the positions of 
cluster centers (means) so that the sum of within-cluster 
similarities (the similarity between data points and their 
cluster centers) is maximized. 
 

Essentially, the sentence-level binary coding scheme 
adopted in this study consists of numeric row vectors 
representing genes (via the associated biological 
function/process terms), and numeric column vectors 
representing annotation terms (via the associated genes). 
These two sets of vectors can be independently clustered 
using available clustering algorithms and tools. This 
approach can produce useful and specific information 
about the biological characteristics of sets of genes. In 
this study, we have used average linkage hierarchical 
clustering algorithm. [33] Using this algorithm has two 
advantages for this study. First, clustograms, a 
visualization of the substructures contained in a gene 
collection are produced, and second, individual clusters 
of genes are identified by clustogram splits at different 
levels. Clustering was performed using Cluto [34] and 
Cluster/Treeview [35] facilitates visualization of the 
clustograms.  
 
Results and Discussion: 
Evaluation 
To obtain a quantitative measure on the performance of 
the various keyword encoding schemes, we developed a 
text corpus of 200 manually annotated abstracts based on 
two cancer categories brain tumor and breast cancer of 
our interest (see Table 4 under supplementary material). 
We used the following procedure to establish the corpus: 
(1)Determine randomly two cancer categories (brain 
tumor and breast cancer ), (2) For each cancer category, 
select randomly 10 genes from Entrez such that species = 
human and number of associated abstracts ≥ 50, (3)For 
each gene identified in this way, select randomly 10 
abstracts, resulting in a total of 200 abstracts; 10 
abstracts for each of the 10 genes associated with each of 
the two cancer categories, (4) For each of the 200 
abstracts, identify manually the keywords characterizing 
biological function and processes from abstracts, MeSH 
terms and GO terms.  

 
With this text corpus we were able to construct a matrix 
containing all 20 genes and their associated keywords 
and keyword frequencies from abstracts, MeSH terms 
and Go terms. The manually annotated corpus of 200 
abstracts and the matrix of 20 annotated genes served as 
gold standard for our evaluation experiments. We carried 
our four evaluation experiments: (1) Abstract keywords 
(baseline). Extracts gene annotation terms based on term 
frequencies * inverse document frequencies (TF*IDF) 
within the entire abstract without regard to sentence 
structure, (2) Sentence keywords. Extracts gene 
annotation terms based sentence-level keywords, (3) 
Sentence + MeSH keywords. As in (2) above plus MeSH 
terms (see Section MeSH keywords extraction), (4) 
Sentence + MeSH + GO keywords. As in (2) above plus 
MeSH terms (see Section MeSH keywords extraction) 
and GO terms (see Section GO keyword extraction). 
 
Essentially, in each evaluation experiment the input is 
the text corpus of 200 abstracts and the output is a list of 
genes with its predicted annotation terms. Informally, the 
closer the predicted annotation terms match the manually 
established annotation terms, the better is the method. 
Performance is measured via commonly used criteria 
such a recall (analogous to sensitivity), precision 
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(analogous to positive predictive value) and the F-
measure (a score that combines recall and precision). 
The results we obtained are shown in Table 5 (below in 
supplementary material). 
 
We notice that the baseline method comprising TF*IDF 
keywords fares worst among all four approaches. We 
interpret this as evidence for the validity of the methods 
involving sentence-level processing as this information is 
likely to carry most specific characterizing terms. The 
‘brute-force’ abstract-level processing will have 
difficulty in extracting these terms correctly and 
consistently. We further notice that the substantial 
improvements of precision and recall when we include 
MeSH terms and GO terms. This may be because these 
two categories are more specific and MeSH and GO 
annotations were done using full-papers and these 
biological functions and process are not described in all 
abstracts.  
 
Clustering of genes resulting from microarray 
experiment 
To demonstrate the usefulness of the presented keyword-
extraction techniques to microarray data analysis, this 
method was applied to annotate and cluster gene lists 
that were found differentially expressed in a microarray 
experiment investigating the impact of two mitogenic 
proteins, Epidermal growth factor (EGF) and 
Sphingosine 1-phosphate (S1P), on glioblastoma cell 
lines [36]. The microarray data set reveals three sets of 
differentially expressed genes (p<0.05), namely, genes 
differentially expressed with response to EGF, G(EGF), 
genes differentially expressed with respect to S1P, 
G(S1P) and genes differently expressed in response to 
both, G(COM). 
 
Genes were considered differentially expressed if their p-
value is smaller than 0.05. We found that, when 
compared to the resting state, 19 genes were significantly 
differentially expressed as a response to EGF, 35 genes 
as a response to S1P and 30 genes as a response to COM, 
i.e., combined stimuli of S1P and EGF. The three gene 
lists are referred to as G(EGF), G(S1P) and G(COM), 
respectively (see Table 6 in supplementary material). 
 
Using these the three gene lists obtained from the 
microarray experiment (Table 6 shown in supplementary 
material) as query in MEDLINE returned the three 
corresponding sets of abstracts A(EGF), A(S1P) and 
A(COM), respectively. The abstracts were processed 
with the keyword extraction method involving sentence-

level, MeSH and GO terms and the resulting 
representations were clustered using average linkage 
hierarchical clustering algorithm. Our gene clustering 
strategy and clustering algorithms are explained in the 
Methodology section. The resulting clustograms are 
presented in Figure 2, Figure 3, and Figure 4, 
respectively.  
 
The clustograms depict associations between genes and 
biological function/process terms derived from the 
abstracts obtained with the various gene lists. For the 
investigating scientist, the clustograms fulfill the 
following main functions: (1) Squares highlighted in a 
horizontal line link a gene to one or more biological 
functions or processes. This is useful to see which genes 
are associated with which functions/processes and which 
genes have few or many associations. The interpretation 
of many and few is very much dependent on the 
associated biological function/process categories, the 
particular scientific question under investigation, and 
also on how extensively a particular gene has been 
researched and reported in the literature. (2) Users may 
visually delineate clusters, i.e., rectangular areas with 
many highlighted squares in them and few highlighted 
squares around them. Any cluster, small or large, is 
potentially very useful to have discovered. Each cluster 
identified in this way relates a set of genes to a group of 
biological functions and processes. In a sense, each gene 
in the clustered is characterized by the same set of 
biological function and process concepts, a kind of ‘guilt 
by association’. This information is extremely useful as 
it provides clues as to the roles genes may play 
collectively in pathways and functions, processes, and 
possible phenotypes, that are associated with these 
pathways.  
 
Summary of analysis of EGF cluster, G(EGF) 
The clustograms in Figure 2 show the results obtained 
from extracting the sentence-level function/process 
keywords (plus MeSH and GO terms) from 28,913 
abstracts (for the 19 genes detected in response to EGF 
stimulus) and the subsequent clustering. In Figure 2a 
several individual genes with very many (e.g., CALD1, 
CLU, FOS) and very few (e.g., HRY, DUSP6) 
associations stand out. Another interesting feature is the 
large cluster at the lower left corner of Figure 2a 
(reproduced in more detail in Figure 2b) containing the 
genes DUSP, ID1, KLF2, CALD1, ABCA, CLU, FOS, 
JUN and SLC5A3. Many genes in this cluster are 
associated with the same set of keywords (transcription 
factor, cell death and secretion). 
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Figure 2: Characterization 19 genes differentially expressed genes in response to EGF. (a) All 19 genes against the 
discovered biological function/process terms. (b) Detailed view of group of manually selected cluster sharing common 
features (9 genes and 12 function/process terms) 
 
Summary of analysis of S1P cluster, G(S1P) 
The clustograms in Figure 3 show the results obtained 
from extracting the sentence-level function/process 
keywords (plus MeSH and GO terms) from 19,705 
abstracts (for the 30 genes detected in response to S1P 
stimulus) and the subsequent clustering. In Figure 3a 
several individual genes with very many (e.g., CCL3, 
IL6, IL8, F3) and very few (e.g., HERB2, DOC1) 
associations stand out. Another interesting feature is the 
large cluster at the upper left corner of Figure 3a 
(reproduced in more detail in Figure 3b containing the 
genes TNAIP, KLF5, BCL6, NAB1, BTG1, NFKBIA, 
NR4A1, SOCS5, CITED2, NRG1, JAG1, PLAU, CCL2, 
IL8, IL6, GLIPR1, F3, MAP2K3, and EHD1. Many 
genes in this cluster are associated with the same set of 
keywords (atherogenesis, mitogenesis, assemble, 
inflammation, focal-contact, …, and protein-binding). 
 
Summary of analysis of the common gene cluster, 
G(COM) 
The clustograms in Figure 4 show the results obtained 
from extracting the sentence-level function/process 
keywords (plus MeSH and GO terms) from 39,890 
abstracts (for the 30 genes detected in response to EFG 
and S1P stimuli) and the subsequent clustering. In Figure 
4a several individual genes with very many (e.g., MYC, 
MAFF, ATF3) and very few (e.g., DIPA, UGCG, 
SNARK) associations stand out. Another interesting 

feature is the large cluster at the upper left corner of 
Figure 4a (reproduced in more detail in Figure 4b 
containing the genes SPRY2, GEM, ZYX, NEDD9, 
MYC, LIF, SERPINE1, DTR, MUCL1, C8FW, MAFF, 
ATF3, RTP801, EGR1, JUNB, FOSL1, CEPED, TIEG, 
EGR2, EGR3, and ZFP36. Many genes in this cluster are 
associated with the same set of keywords (DNA binding, 
zinc fingers, repressor proteins, …, and mitosis).  
 
An important aim in microarray data mining is to bind 
transcriptionally modulated genes to functional pathways 
or to understand how transcriptional modulation can be 
associated with specific biological events such as genetic 
disease phenotype, molecular mechanism of drug action, 
cell differentiation etc. However, the amount of 
functional annotation available with each 
transcriptionaly modulated genes is still a limiting factor 
because not all genes are well annotated. Our functional 
clustering/grouping will enable to select literally 
informative genes (Figure 2b, Figure 3b, and Figure 4b) 
for further investigations in the above data mining and 
knowledge discovery pipeline. Our evaluation suggests 
that this approach will provide more specific and useful 
information than typical approaches using abstract-level 
information. This is particularly the case when the 
sentence-level terms are augmented by MeSH and GO 
keywords.  
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Figure 3: Characterization 30 genes differentially expressed genes in response to S1P. (a) All 30 genes against the 
discovered biological function/process terms. (b) Detailed view of group of manually selected cluster sharing common 
features (19 genes and 17 function/process terms)  
 

 
Figure 4: Characterization 30 genes differentially expressed genes in response to both EGF and S1P. (a) All 30 genes 
against the discovered biological function/process terms. (b) Detailed view of manually selected cluster sharing 
common features (21 genes and 18 function/process terms) 
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Conclusion: 
The sequencing of whole genomes and the introduction 
high throughput analysis (e.g., oligonucleotide and 
cDNA chips, MALDI/SELDI-TOF MS) provides 
biomedical research with a global perspective, which 
necessitates the development of novel mining tools to 
explore and interpret data in timely manner. This paper 
presents a novel approach to combine sentence-level 
keywords with GO and MeSH terms. In our evaluation 
experiment, this approach has shown promising results. 
The present evaluation suggests that this approach will 
provide more specific information than typical 
approaches using abstract-level information. This is 
particularly the case when the sentence-level terms are 
complemented by MeSH and GO terms. Further, 
clustering of genes into different functional groups based 
on literature keywords has the potential to help biologists 
identify and characterize literally informative genes of 
interest for further investigations.  
 
Future work: 
Future enhancements of the system will include 
additional data resources (OMIM. DIP, KEGG) and the 
generation of association rules to identify correlations 
among genes in the same cluster. Association rules 
between the genes in the same cluster seem particularly 
interesting because it allows one to find the presence of 
regularities between gene groups. Finally, abstracts were 
used in this study as they are readily and easily available 
but they are limited in content. As full-text contains large 
number of irrelevent sentences compared to abstracts this 
approach may be useful for full-text analysis too, as it 
performs filtering of irrelevant sentences before 
clustering. The plan to perform the current study with 
full-text articles and compare the results with that of 
abstracts is on the way.  
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Supplementary material 
 

Name of Expression Expression Pattern Sentence Output 
Nouns describing agents ($gene (is)? (the|an|a) @{0,2}$action of @{0,2} 

$gene) 
IL6, a known mediator of 
STAT3 response 

Nouns describing actions ($gene @{0,6} $action (of|with) @{0,1} $gene) 
 

abi5 domains required for 
interaction with abi3 

Passive verbs ($gene @{0.6} (is|was|be|are|were) @{0,1} $action 
$(by|via|through) @{0,3} $gene) 
 

Protein kinase c (PKC) has 
been shown to be activated 
by parathyroid hormone 

Active verbs ($gene $sub-action @{0,1} $action @{0,2} $gene) Insulin mediated inhibition 
of hormone sensitivity 
lipase activity 

Table 1: An example set of regular expressions for nouns describing agents and agents, and passive and active 
verbs 
 

Genes / Terms t1 t2 ... tk 
g1 w11 = 0 w21 = 1 ... wk1 = 1 
g2 w12 = 1 w22 = 1 ... wk2 = 0 
... ... ... ... ... 
gn w1n = 0 w2n = 0 ... wkn = 1 

Table 2: Binary representation of genes: wij represents the ‘normalized’ absolute keyword frequency of the 
keyword (or term) tj for gene gi (see also illustration in Table 3) 
 

Genes / Terms cell death zinc fingers … DNA methylation 
HRY 0 1 … 1 
KLF2 0 0 … 1 
ID1 1 1 … 0 
JUN 1 0 … 0 

DUSP6 0 0 … 0 
… … … … … 

Table 3: Rudimentary example of gene representation based on gene list G(EFG) 
 

Genes Category 
ADAM23, DKK1, IGF2, LRRC4, L3MBTL, MMP9, MSH2, PTPNS1, SFMBT1, ZIC1 Brain Tumor 
AMPH, ATM, BRCA1, BRCA2, CHEK2, CDH1, PHB, TFF1, TSG101, XRCC3 Breast Cancer 
Table 4: Test set of 20 human genes manually grouped into two cancer classes 
 
Keywords Extraction Method Precision Recall F-measure (%) 
Abstract keywords (baseline) 0.31 0.24 27.05 
Sentence keywords only 0.57 0.38 45.60 
Sentence + MeSH  keywords 0.64 0.47 54.19 
Sentence + MeSH + GO keywords 0.78 0.72 74.88 
Table 5: Precision, recall and F-measure of extracted keywords 
 

Gene List Name of Genes 
G(EGF)  
(19 genes) 

HRY, KLF2, ID1, JUN, DUSP6, IMPDH2, GP1BB, PNUTL1, CGI-96, CALD1, TRIM15, 
FOS, SPRY4, CLU, SLC5A3, MRPS6, ABCA1, OLFM1, PHLDA1 

G(S1P)  
(35 genes) 

F3, NR4A1, KLF5, GADD45B, IL8,  CITED2, CALD1, IL6, BCL6, LBH, HRB2, KIAA0992, 
NFKBIA, TNFAIP3, CCL2, DSCR1, TXNIP, NAB1, EHD1, GBP1, GLIPR1, MAP2K3, 
FZD7, RGS3, SOCS5, FOSL2, JAG1, DOC1, NRG1, BTG1, PDE4C, KIAA1718, KIAA0346, 
SFRS3, PLAU 

G(COM) 
(30 genes) 

MAFF, DUSP5, EGR3, SERPINE1, ZFP36, DUSP1, LIF, DTR, MYC, GADD45B, RTP801, 
ATF3, JUNB, SNARK, WEE1, EGR2, TIEG, SPRY2, CEBPD, SGK, GEM, NEDD9, LDLR, 
EGR1, C8FW, UGCG, MCL1, ZYX, FOSL1, DIPA 

Table 6: Gene lists for differentially expressed genes 
 


