Bioinformation 18(5): 488-491 (2022)

©Biomedical Informatics (2022)

OPEN ACCESS GOLD

www.bioinformation.net Volume 18(5)

OPEN ACCESS GOLD

Research Article

Received April 2, 2022; Revised May 31, 2022; Accepted May 31, 2022, Published May 31, 2022

Declaration on Publication Ethics:

The author's state that they adhere with COPE guidelines on publishing ethics as described elsewhere at https://publicationethics.org/. The authors also undertake that they are not associated with any other third party (governmental or non-governmental agencies) linking with any form of unethical issues connecting to this publication. The authors also declare that they are not withholding any information that is misleading to the publisher in regard to this article.

Declaration on official E-mail:

The corresponding author declares that lifetime official e-mail from their institution is not available for all authors

License statement:

This is an Open Access article which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. This is distributed under the terms of the Creative Commons Attribution License

Comments from readers:

Articles published in BIOINFORMATION are open for relevant post publication comments and criticisms, which will be published immediately linking to the original article without open access charges. Comments should be concise, coherent and critical in less than 1000 words.

Edited by P Kangueane Citation: Kumar *et al.* Bioinformation 18(5): 488-491 (2022)

Variations in the shape of foramen magnum at the base of human skulls among Indians in Rajasthan

Raj Kumar¹, Hemant Ashish Harode², Rakesh Vora¹ & Mayankkumar Javia^{1*}

¹Department of Anatomy, Shantabaa Medical College & General Hospital, Amreli, Gujarat 365601 India; ²Department of Anatomy, Zydus Medical College & Hospital, Dahod, Gujarat 389151 India; *Corresponding author:

College Websites:

Shantabaa Medical College & General Hospital, Amreli, Gujarat: https://smcgh.edu.in/ Zydus Medical College & Hospital, Dahod, Gujarat: https://www.zmchdahod.org

Author contacts:

Mayankkumar Javia – Phone: +91 9428242445; Email: drjaviamd@gmail.com Raj Kumar - rghanghas@gmail.com Hemant Ashish Harode - hemantashish786@yahoo.com Rakesh Vora - rakesh.vora26@gmail.com

Abstract:

Variations in the shape of foramen magnum can affect the normal anatomy of vital structures passing through it. Therefore, it is of interest to evaluate the various shapes of foramen magnum by using CT scans performed in patients of Indian population to establish clinical

DOI: 10.6026/97320630018488

Bioinformation 18(5): 488-491 (2022)

correlation. A total of 314 CT images of human skull base obtained from the Department of Radio-diagnosis, Geetanjali Medical College and Hospital, Udaipur, Rajasthan were used in the present study. All the patients' CT scans were observed to determine the shape of foramen magnum. They were classified into one of the following shapes: Oval, round, tetragonal, egg shaped, hexagonal, pentagonal and irregular. The shapes of the foramen magnum in CT scans were oval in 39.09%, round in 22.61%, tetragonal in 12.10%, hexagonal in 10.51%, irregular in 7.96%, pentagonal in 5.41% and egg shaped in 1.59% CT images. Data shows that it is easy to operate at the base of skull in case of round, oval and hexagonal shape foramen magnum, as the working space is more in these shapes.

Keywords: Radiological study, CT Image, variations, shape, foramen magnum

Abbreviations: FM (Foramen Magnum), CT (computed tomography)

Background:

In modern era of clinical medicine, CT scan has evolved as a powerful and widely used diagnostic imaging tool. [1] The newest and most advanced Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) methods can evaluate anatomical variations of living human subjects. [2] Knowledge of the incidence of symmetric in variations of foramina of human skull is helpful in diagnostic evaluation of radiologic film [3] Variations in shape of foramen magnum can affect the normal anatomy of vital structures passing through it. [4] Therefore, it is of interest to evaluate the various shapes of foramen magnum by using CT scans performed in patients of Indian population to establish clinical correlation.

Materials and Methods:

Present study was done in the Department of Anatomy, Geetanjali Medical College and Hospital, Udaipur, Rajasthan after obtaining institutional ethical approval. Total 314 patients' CT images of human skull base obtained from the Department of Radiodiagnosis, Geetanjali Medical College and Hospital, Udaipur, Rajasthan were used in the present study. The CT images belong to the patients who had undergone CT scan evaluation for head and neck region for different clinical indications between the year of 2013 and 2018. All the patients' CT scans were visually assessed to determine the shape of FM and was classified into one of the following seven shapes - oval, round, tetragonal, egg shaped, hexagonal, pentagonal and irregular (Figure 1). The findings of the present study were statistically analyzed by using Microsoft Office Excel 2019.

Table 1: The frequency of various shapes of foramen magnum in CT scans in present study

study			
Shape of foramen magnum	CT scan		
	N=314	%	
Oval	125	39.09	
Round	71	22.61	
Irregular	25	7.96	
Tetragonal	38	12.10	
Pentagonal	17	5.41	
Hexagonal	33	10.51	
Egg	05	1.59	

Figure 1: CT images showing the various shapes of foramen magnum; Oval, Round, Tetragonal, Egg shaped, Hexagonal, Pentagonal, Irregular

Bioinformation 18(5): 488-491 (2022)

Results & Discussion:

The various shapes of the foramen magnum in CT images found in current study are oval in 39.09%, round in 22.61%, tetragonal in 12.10%, hexagonal in 10.51%, irregular in 7.96%, pentagonal in 5.41% and egg shaped in 1.59% cases. (Table 1, Figure 2) Evaluation of the different shape of skull base foramina by using computed tomography scans of patients has gained importance in clinical medicine. Most common shape of foramen magnum observed in the present study was oval, which was present in 39.09% cases. This value is lower as compared to the observations by Ganapathy *et al.* [5] (2014) (Table 2), who found oval shaped foramen magnum in 66% CT images. Furtado et al. [4] (2010) (Table 2) in 9.6 %, Sarthak et al. [6] (2016) (Table 2) in 18.2%, Edwards et al. [7] (2013) (Table 2) in 24.4% and Aghakhani et al. [8] (2016) (Table 2) in 35% CT images noticed oval shaped FM, which are lower than the findings of the present study. Round shape of foramen magnum was observed in 22.61% CT images. Edwards et al. [7] (2013) in 26% and Sarthak et al. [6] (2016) in 35.4% CT images observed round shape of foramen magnum, which are higher than the present value. The findings of following Authors are less than the present values: Furtado et al. [4] (2010) in 4.6%, Ganapathy et al. [5] (2014) in 9% and Aghakhani et al. [8] (2016) in 8% CT images. This may be due to variation in the categorization of oval and round shapes because percentages of oval shape foramen magnum has decreased and reciprocal increase in the percentage of round shape foramen magnum. In the present study, the foramen magnum was tetragonal shape in 12.10% CT images. Furtado et al. [4] (2010) observed tetragonal shape of foramen magnum in 19.04% CT images in his study, which is greater than the present value. Ganapathy et al. [5] (2014) in 9%, Edwards et al. [7] (2013) in 6%, Aghakhani et al. [8] (2016) in 4.4% Sarthak et al. [6] (2016) in 8% CT images observed tetragonal shape of foramen magnum, which are lower than the current study. In the present study the foramen magnum was hexagonal shape in 10.51% CT images. Furtado et al. [4] (2010) in 19.04 %, Edwards K et al. [7] (2013) in 16.4% and Aghakhani et al. [8] (2016) in 23% CT images in their study, which is greater than the present value whereas Ganapathy et al. [5] (2014) observed hexagonal shape of foramen magnum in 10 % CT images in their study, which is less than present value. In the present study the foramen magnum was of irregular shape in 7.96 % CT images. The findings of following authors were higher than the present value: Ganapathy et al. [5] (2014) in 16%, Sarthak et al. [6] (2016) in 25.8%, Edwards et al. [7] (2013) in 15% and Aghakhani et al. [8] (2016) in 12.4% CT images. In the present study, the foramen magnum was of pentagonal shape in 5.41% CT images. Furtado et al. [4] (2010) in 9.6 %, Sarthak et al. [6] (2016) in 11.8%, Edwards et al. [7] (2013) in 8.4 % and Aghakhani et al. [8] (2016) in 13% CT images observed pentagonal shape of foramen magnum. These values are greater than the present value. In the present study, the foramen magnum was egg shaped in 1.59% cases. Furtado et al. [4] (2010) in 9.5 % and Edwards et al. [7] (2013) in 9.5% CT images observed egg shape of foramen magnum in their study, which is higher than the present value. The difference in percentages of various shapes of foramen magnum could be due to study done on different population or interobserver variation or genetic variation. Anatomical values obtained by different authors are nearly the same, which is not correct with regards to the values of the radiologic study [9-14].

Conclusion:

Data shows that the oval shape is the most common, round is the second most common and egg shape is the least most common shape of foramen magnum in CT images of Indian population. Data also shows that it is easy to operate at the base of skull in case of round, oval and hexagonal shape foramen magnum, as the working space is more in these shapes.

95

N.A

1.59

S. No	Authors	Sample size	Round	Oval	Irregular	Tetragonal	Hexagonal	Pentagonal	Egg shape
1	Furtado et al. [4]	21	4.6	9.6		19.04	19.04	9.6	9.5
2	Ganapathy et al. [5]	100	9	66	16	9	10	N.A	N.A
3	Sarthak et al. [6]	93	35.4	18.2	25.8	8	N.A	11.8	N.A

15

12.4

7.96

6

4.4

12.11

Table 2: Comparison between present study and other authors' studies about percentage of various shapes of FM in CT scans

24 4

35

39.09

[*N.A. - Not applicable]

4

Edwards et al. [7]

Current study

Aghakhani et al. [8]

250

100

314

26

22.61

164

10.51

84

13

5.4

ISSN 0973-2063 (online) 0973-8894 (print)

Bioinformation 18(5): 488-491 (2022)

References:

- [1] Patel PR *et al. InStatPearls [Internet]* 2022. StatPearls Publishing. [PMID: 33620865]
- [2] Van Beek EJ & Hoffman EA. Clinics in Chest Medicine. 2008
 29:195 [PMID: 18267192]
- [3] Nakashima J & Duong H. *InStatPearls* [Internet] 2021. StatPearls Publishing.[PMID: 31985938]
- [4] Furtado SV *et al. Acta neurochirurgica.* 2010 **152**:221 [PMID: 19672553]
- [5] Ganapathy A *et al. Int J Cur Res Rev.* 2014 6:11 [https://ijcrr.com/uploads/728_pdf.pdf]
- [6] Sarthak J & Batham IK. International Journal of Medical Research and Review. 2016 4:357
 [https://ijmrr.medresearch.in/index.php/ijmrr/article/vie w/483/935]
- [7] Edwards K et al. Journal of Forensic Radiology and Imaging. 2013 1:186 [https//doi.org/10.1016/j.jofri.2013.06.004]

- ©Biomedical Informatics (2022)
- [8] Aghakhani K et al. International Journal of Medical Toxicology and Forensic Medicine. 2016 6:29 DOI: [https://journals.sbmu.ac.ir/ijmtfm/article/view/IJMTFM -9503/5]
- [9] Vinutha SP *et al. Anat Res Int.* 2018 2056291 [PMID: 30356386]
- [10] Kamath VG *et al. Anat Res Int.* 2015 459428. [PMID: 26346917]
- [11] Raikar NA et al. J Forensic Dent Sci. 2016 8:180 [PMID: 28123285].
- [12] Sunar M et al. Asian J Neurosurg. 2019 14702 [PMID: 31497088]
- [13] Natsis K et al. Surgical and Radiologic Anatomy. 2013 35:925 [PMID: 23620089]
- [14] Zdilla MJ et al. J Craniovert Jun Spine 2017 8:205 [PMID: 29021672]

